cho tam giác ABC vuông tại A. Từ A kẻ AH vuông góc BC tại H. Trên BC lấy E sao cho BE=BA. Kẻ EK vuông góc AC (K thuộc AC). Chúng ming AK=AH
cho tam giác ABC vuông tại A. Từ A kẻ AH vuông góc BC tại H. Trên BC lấy E sao cho BE=BA. Kẻ EK vuông góc AC (K thuộc AC). Chúng ming AK=AH
Giải:
ΔBAEΔBAE có:
BE=AB(gt)BE=AB(gt)
⇒ΔBAE⇒ΔBAE cân tại BB
⇒BAEˆ=BEAˆ⇒BAE^=BEA^(1)(1)
Ta có: BA⊥ACBA⊥AC ( ΔABCΔABC vuông tại AA )
EK⊥AC(gt)EK⊥AC(gt)
Nên: BABA // EKEK
⇒BAEˆ=AEKˆ(2)⇒BAE^=AEK^(2)
Từ (1) và (2) suy ra: BEAˆ=AEKˆBEA^=AEK^
Xét ΔAHEΔAHE và ΔAKEΔAKE có:
Hˆ=Kˆ(=90o)H^=K^(=90o)
BEAˆ=AEKˆ(cmt)BEA^=AEK^(cmt)
ACAC là cạnh huyền chung
⇒ΔAHE=ΔAKE⇒ΔAHE=ΔAKE ( cạnh huyền – góc nhọn )
⇒AH=AK
Đáp án:
Giải:
ΔBAEΔBAE có:
BE=AB(gt)BE=AB(gt)
⇒ΔBAE⇒ΔBAE cân tại BB
⇒BAEˆ=BEAˆ⇒BAE^=BEA^(1)(1)
Ta có: BA⊥ACBA⊥AC ( ΔABCΔABC vuông tại AA )
EK⊥AC(gt)EK⊥AC(gt)
Nên: BABA // EKEK
⇒BAEˆ=AEKˆ(2)⇒BAE^=AEK^(2)
Từ (1) và (2) suy ra: BEAˆ=AEKˆBEA^=AEK^
Xét ΔAHEΔAHE và ΔAKEΔAKE có:
Hˆ=Kˆ(=90o)H^=K^(=90o)
BEAˆ=AEKˆ(cmt)BEA^=AEK^(cmt)
ACAC là cạnh huyền chung
⇒ΔAHE=ΔAKE⇒ΔAHE=ΔAKE ( cạnh huyền – góc nhọn )
⇒AH=AK
Đúng 100% nhé bạn
Giải thích các bước giải: