cho `tan ∝=2` tính a) `\frac{2sin ∝+3cos ∝}{3sin ∝-2cos ∝}` b) `\frac{2sin^2 ∝+3cos ∝sin ∝+3cos^2 ∝}{4sin ∝+3sin∝cos ∝}`

cho `tan ∝=2` tính
a) `\frac{2sin ∝+3cos ∝}{3sin ∝-2cos ∝}`
b) `\frac{2sin^2 ∝+3cos ∝sin ∝+3cos^2 ∝}{4sin ∝+3sin∝cos ∝}`

0 bình luận về “cho `tan ∝=2` tính a) `\frac{2sin ∝+3cos ∝}{3sin ∝-2cos ∝}` b) `\frac{2sin^2 ∝+3cos ∝sin ∝+3cos^2 ∝}{4sin ∝+3sin∝cos ∝}`”

  1. Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    \tan \alpha  = 2 \Leftrightarrow \dfrac{{\sin \alpha }}{{\cos \alpha }} = 2 \Rightarrow \cos \alpha  \ne 0\\
    a,\\
    \dfrac{{2\sin \alpha  + 3\cos \alpha }}{{3\sin \alpha  – 2\cos \alpha }} = \dfrac{{\dfrac{{2\sin \alpha  + 3\cos \alpha }}{{\cos \alpha }}}}{{\dfrac{{3\sin \alpha  – 2\cos \alpha }}{{\cos \alpha }}}} = \dfrac{{2.\dfrac{{\sin \alpha }}{{\cos \alpha }} + 3}}{{3.\dfrac{{\sin \alpha }}{{\cos \alpha }} – 2}}\\
     = \dfrac{{2.\tan \alpha  + 3}}{{3.\tan \alpha  – 2}} = \dfrac{{2.2 + 3}}{{3.2 – 2}} = \dfrac{7}{4}\\
    b,\\
    \dfrac{{2{{\sin }^2}\alpha  + 3.\cos \alpha .\sin \alpha  + 3{{\cos }^2}\alpha }}{{4{{\sin }^2}\alpha  + 3.\sin \alpha .\cos \alpha }}\\
     = \dfrac{{\dfrac{{2{{\sin }^2}\alpha  + 3.\cos \alpha .\sin \alpha  + 3{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}}}{{\dfrac{{4{{\sin }^2}\alpha  + 3.\sin \alpha .\cos \alpha }}{{{{\cos }^2}\alpha }}}}\\
     = \dfrac{{2.\dfrac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + 3.\dfrac{{\sin \alpha }}{{\cos \alpha }} + 3}}{{4.\dfrac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + 3.\dfrac{{\sin \alpha }}{{\cos \alpha }}}}\\
     = \dfrac{{2.{{\tan }^2}\alpha  + 3.\tan \alpha  + 3}}{{4.{{\tan }^2}\alpha  + 3.\tan \alpha }}\\
     = \dfrac{{{{2.2}^2} + 3.2 + 3}}{{{{4.2}^2} + 3.2}}\\
     = \dfrac{{17}}{{22}}
    \end{array}\)

    Bình luận

Viết một bình luận