Cho tan a= -12/13 và 3π/2 04/11/2021 Bởi Ximena Cho tan a= -12/13 và 3π/2 { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Cho tan a= -12/13 và 3π/2
Đáp án: \[\cos \left( {\frac{\pi }{3} – a} \right) = \frac{{13\sqrt 3 – 12}}{{2\sqrt {313} }}\] Giải thích các bước giải: Ta có: \(\begin{array}{l}\frac{{3\pi }}{2} < a < 2\pi \Rightarrow \left\{ \begin{array}{l}\sin a < 0\\\cos a > 0\end{array} \right.\\\tan a = \frac{{ – 12}}{{13}} \Leftrightarrow \frac{{\sin a}}{{\cos a}} = – \frac{{12}}{{13}} \Leftrightarrow \sin a = – \frac{{12}}{{13}}\cos a\\{\sin ^2}a + {\cos ^2}a = 1\\ \Leftrightarrow {\left( { – \frac{{12}}{{13}}\cos a} \right)^2} + {\cos ^2}a = 1\\ \Leftrightarrow \frac{{313}}{{169}}{\cos ^2}a = 1\\ \Leftrightarrow {\cos ^2}a = \frac{{169}}{{313}}\\\cos a > 0 \Rightarrow \cos a = \frac{{13}}{{\sqrt {313} }}\\\sin a = \frac{{ – 12}}{{13}}\cos a = – \frac{{12}}{{\sqrt {313} }}\\\cos \left( {\frac{\pi }{3} – a} \right) = \cos \frac{\pi }{3}.\cos a + \sin \frac{\pi }{3}.\sin a = \frac{1}{2}.\frac{{ – 12}}{{\sqrt {313} }} + \frac{{\sqrt 3 }}{2}.\frac{{13}}{{\sqrt {313} }} = \frac{{13\sqrt 3 – 12}}{{2\sqrt {313} }}\end{array}\) Vậy \(\cos \left( {\frac{\pi }{3} – a} \right) = \frac{{13\sqrt 3 – 12}}{{2\sqrt {313} }}\) Bình luận
Đáp án:
\[\cos \left( {\frac{\pi }{3} – a} \right) = \frac{{13\sqrt 3 – 12}}{{2\sqrt {313} }}\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\frac{{3\pi }}{2} < a < 2\pi \Rightarrow \left\{ \begin{array}{l}
\sin a < 0\\
\cos a > 0
\end{array} \right.\\
\tan a = \frac{{ – 12}}{{13}} \Leftrightarrow \frac{{\sin a}}{{\cos a}} = – \frac{{12}}{{13}} \Leftrightarrow \sin a = – \frac{{12}}{{13}}\cos a\\
{\sin ^2}a + {\cos ^2}a = 1\\
\Leftrightarrow {\left( { – \frac{{12}}{{13}}\cos a} \right)^2} + {\cos ^2}a = 1\\
\Leftrightarrow \frac{{313}}{{169}}{\cos ^2}a = 1\\
\Leftrightarrow {\cos ^2}a = \frac{{169}}{{313}}\\
\cos a > 0 \Rightarrow \cos a = \frac{{13}}{{\sqrt {313} }}\\
\sin a = \frac{{ – 12}}{{13}}\cos a = – \frac{{12}}{{\sqrt {313} }}\\
\cos \left( {\frac{\pi }{3} – a} \right) = \cos \frac{\pi }{3}.\cos a + \sin \frac{\pi }{3}.\sin a = \frac{1}{2}.\frac{{ – 12}}{{\sqrt {313} }} + \frac{{\sqrt 3 }}{2}.\frac{{13}}{{\sqrt {313} }} = \frac{{13\sqrt 3 – 12}}{{2\sqrt {313} }}
\end{array}\)
Vậy \(\cos \left( {\frac{\pi }{3} – a} \right) = \frac{{13\sqrt 3 – 12}}{{2\sqrt {313} }}\)