Cho: Tan$\alpha$ + cot$\alpha$ = 3
Tính C = $tan^4\alpha$ – $cot^4\alpha$
Biết:
A = $tan^2\alpha$ + $cot^2\alpha$ = 11
B= tan$\alpha$ + cot$\alpha$ = +- $\frac{\sqrt[]{7}}{4}$
Cho: Tan$\alpha$ + cot$\alpha$ = 3
Tính C = $tan^4\alpha$ – $cot^4\alpha$
Biết:
A = $tan^2\alpha$ + $cot^2\alpha$ = 11
B= tan$\alpha$ + cot$\alpha$ = +- $\frac{\sqrt[]{7}}{4}$
Đáp án:
$\begin{array}{l}
Do:\cot a = \dfrac{1}{{\tan a}}\\
Khi:\tan a + \cot a = 3\\
\Leftrightarrow \tan a + \dfrac{1}{{\tan a}} = 3\\
\Leftrightarrow {\tan ^2}a – 3\tan a + 1 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\tan a = \dfrac{{3 – \sqrt 5 }}{2};\cot a = \dfrac{{3 + \sqrt 5 }}{2}\\
\tan a = \dfrac{{3 + \sqrt 5 }}{2};\cot a = \dfrac{{3 – \sqrt 5 }}{2}
\end{array} \right.\\
\Leftrightarrow C = {\tan ^4}a – {\cot ^4}a\\
= {\left( {\dfrac{{3 \pm \sqrt 5 }}{2}} \right)^4} – {\left( {\dfrac{{3 \mp \sqrt 5 }}{2}} \right)^4}\\
= \pm 46,95
\end{array}$