Cho tana – 3cota =6 và π/2 28/08/2021 Bởi Melody Cho tana – 3cota =6 và π/2 { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Cho tana - 3cota =6 và π/2
Đáp án: \(\sin a + \cos a = – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \left( {4 – 2\sqrt 3 } \right)\) Giải thích các bước giải: \(\begin{array}{l}\tan a – 3\cot a = 6\,\,\,\left( {\frac{\pi }{2} < a < \pi } \right)\\ \Leftrightarrow \tan a – \frac{3}{{\tan a}} = 6\\ \Leftrightarrow {\tan ^2}a – 6\tan a – 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\tan a = 3 + 2\sqrt 3 \\\tan a = 3 – 2\sqrt 3 \end{array} \right.\\Do\,\,\,\frac{\pi }{2} < a < \pi \Rightarrow \left\{ \begin{array}{l}\tan a < 0\\\sin a > 0\\\cos a < 0\end{array} \right.\\ \Rightarrow \tan a = 3 – 2\sqrt 3 .\\Ta\,\,co:\,\,\,{\tan ^2}a + 1 = \frac{1}{{{{\cos }^2}a}}\\ \Leftrightarrow {\cos ^2}a = \frac{1}{{{{\tan }^2}a + 1}} = \frac{1}{{{{\left( {3 – 2\sqrt 3 } \right)}^2} + 1}} = \frac{{11 + 6\sqrt 3 }}{{26}}\\ \Rightarrow \cos a = – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \\ \Rightarrow \sin a = \tan a.\cos a = – \left( {3 – 2\sqrt 3 } \right).\sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \\ \Rightarrow \sin a + \cos a = – \left( {3 – 2\sqrt 3 } \right).\sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \\ = – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \left( {3 – 2\sqrt 3 + 1} \right)\\ = – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \left( {4 – 2\sqrt 3 } \right).\end{array}\) Bình luận
Đáp án:
\(\sin a + \cos a = – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \left( {4 – 2\sqrt 3 } \right)\)
Giải thích các bước giải:
\(\begin{array}{l}
\tan a – 3\cot a = 6\,\,\,\left( {\frac{\pi }{2} < a < \pi } \right)\\
\Leftrightarrow \tan a – \frac{3}{{\tan a}} = 6\\
\Leftrightarrow {\tan ^2}a – 6\tan a – 3 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\tan a = 3 + 2\sqrt 3 \\
\tan a = 3 – 2\sqrt 3
\end{array} \right.\\
Do\,\,\,\frac{\pi }{2} < a < \pi \Rightarrow \left\{ \begin{array}{l}
\tan a < 0\\
\sin a > 0\\
\cos a < 0
\end{array} \right.\\
\Rightarrow \tan a = 3 – 2\sqrt 3 .\\
Ta\,\,co:\,\,\,{\tan ^2}a + 1 = \frac{1}{{{{\cos }^2}a}}\\
\Leftrightarrow {\cos ^2}a = \frac{1}{{{{\tan }^2}a + 1}} = \frac{1}{{{{\left( {3 – 2\sqrt 3 } \right)}^2} + 1}} = \frac{{11 + 6\sqrt 3 }}{{26}}\\
\Rightarrow \cos a = – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \\
\Rightarrow \sin a = \tan a.\cos a = – \left( {3 – 2\sqrt 3 } \right).\sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \\
\Rightarrow \sin a + \cos a = – \left( {3 – 2\sqrt 3 } \right).\sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \\
= – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \left( {3 – 2\sqrt 3 + 1} \right)\\
= – \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \left( {4 – 2\sqrt 3 } \right).
\end{array}\)