Cho tỉ lệ thức :a/b =c/d chứng tỏ rằng ta có tỉ lệ thức :a.b / b.d = (a+c) .(a+c) / (b+d).(b+d) ( / nghĩa là trên)

Cho tỉ lệ thức :a/b =c/d
chứng tỏ rằng ta có tỉ lệ thức :a.b / b.d = (a+c) .(a+c) / (b+d).(b+d)
( / nghĩa là trên)

0 bình luận về “Cho tỉ lệ thức :a/b =c/d chứng tỏ rằng ta có tỉ lệ thức :a.b / b.d = (a+c) .(a+c) / (b+d).(b+d) ( / nghĩa là trên)”

  1. Giải thích các bước giải:

     Giả sử:

    $\begin{array}{l}
    \frac{a}{b} = \frac{c}{d} = k\\
     \Rightarrow \left\{ \begin{array}{l}
    a = b.k\\
    c = d.k
    \end{array} \right.\\
     \Rightarrow \frac{{\left( {a + c} \right)\left( {a + c} \right)}}{{\left( {b + d} \right)\left( {b + d} \right)}} = \frac{{{{\left( {b.k + d.k} \right)}^2}}}{{{{\left( {b + d} \right)}^2}}} = \frac{{{k^2}{{\left( {b + d} \right)}^2}}}{{{{\left( {b + d} \right)}^2}}} = {k^2} = \frac{a}{b}.\frac{c}{d}\\
    Vậy\,\frac{{\left( {a + c} \right)\left( {a + c} \right)}}{{\left( {b + d} \right)\left( {b + d} \right)}} = \frac{{a.b}}{{c.d}}
    \end{array}$

    Bình luận

Viết một bình luận