Cho tổng M = 1+3^2+3^4+3^6+…+3^2018+3^2020 Hỏi chữ số tận cùng là bao nhiêu và vì sao

Cho tổng M = 1+3^2+3^4+3^6+…+3^2018+3^2020
Hỏi chữ số tận cùng là bao nhiêu và vì sao

0 bình luận về “Cho tổng M = 1+3^2+3^4+3^6+…+3^2018+3^2020 Hỏi chữ số tận cùng là bao nhiêu và vì sao”

  1. Giải

    Số số hạng của M là: (2020 – 0) : 2 + 1 = 1011 (số hạng)

    Vì M có 1011 số hạng nên ta chia M thành 505 cặp, thừa 1 số hạng như sau:

    M = 1 + (32 + 34) + (36 + 38) + … + (32018 + 32020)

    M = 1 + 32(1 + 32) + 36(1 + 32) + … + 32018(1 + 32)

    M = 1 + 32 . 10 + 36 . 10 + … + 32018 . 10

    M= 1 + (32 + 36 + … + 32018) . 10

    M = 1 + (…0) = (…1)

    Vậy chữ số tận cùng của M là 1

    ~ Xin hay nhất ~

    @Nhím

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    3M=3+3^3+3^4+….+3^2021

    3M-M=(3+3^3+3^4+..+3^2021)-(1+3^2+…+3^2020)

    2M=3+3^2021-1-3^2

    2M=(3^2)1010.3-7

    2M=….3-7=…6

    VẬY CSTC LÀ 6

     

    Bình luận

Viết một bình luận