Cho tứ diện ABCD có tam giác BCD đều cạnh a,AB vuông góc với ( BCD) và AB =2a . Gọi M là trung điểm của AD . Góc giữa CM và mp ( BCD) . Tính giá trị đ

Cho tứ diện ABCD có tam giác BCD đều cạnh a,AB vuông góc với ( BCD) và AB =2a . Gọi M là trung điểm của AD . Góc giữa CM và mp ( BCD) . Tính giá trị đó

0 bình luận về “Cho tứ diện ABCD có tam giác BCD đều cạnh a,AB vuông góc với ( BCD) và AB =2a . Gọi M là trung điểm của AD . Góc giữa CM và mp ( BCD) . Tính giá trị đ”

  1. Đáp án:

    $\widehat{(MC;(BCD))} \approx 49^o$

    Giải thích các bước giải:

    Ta có: $AB\perp (BCD) \, (gt)$

    $\Rightarrow AB\perp BD$

    Kẻ $MH\perp BD \, (H \in BD)$

    $\Rightarrow MH//AB$

    $\Rightarrow MH\perp (BCD)$

    $\Rightarrow HC$ là hình chiếu của $MC$ lên $(BCD)$

    $\Rightarrow \widehat{(MC;(BCD))} = \widehat{(MC;HC)} = \widehat{MCH}$

    Ta có: $MH//AB$

    $AM = MD \, (gt)$

    $\Rightarrow HB = HD; MH = \dfrac{1}{2}AB$ (tính chất đường trung bình)

    $\Rightarrow HC = \dfrac{a\sqrt3}{2}; \, MH = a$

    $\Rightarrow \tan\widehat{MCH} = \dfrac{MH}{HC} = \dfrac{a}{\dfrac{a\sqrt3}{2}} = \dfrac{2\sqrt3}{3}$

    $\Rightarrow \widehat{MCH} = \arctan\left(\dfrac{2\sqrt3}{3}\right) \approx 49^o$

    Vậy $\widehat{(MC;(BCD))} \approx 49^o$

    Bình luận

Viết một bình luận