Cho |véc to a|=3 và |véc tơ b |=2;(véc tơ a,véc tơ b)=120 tính |véc tơ a- véc tơ b| và |2 véc tơ a + 3 véc tơ b|

Cho |véc to a|=3 và |véc tơ b |=2;(véc tơ a,véc tơ b)=120 tính |véc tơ a- véc tơ b| và |2 véc tơ a + 3 véc tơ b|

0 bình luận về “Cho |véc to a|=3 và |véc tơ b |=2;(véc tơ a,véc tơ b)=120 tính |véc tơ a- véc tơ b| và |2 véc tơ a + 3 véc tơ b|”

  1. Đáp án:

     $\left| {\overrightarrow a  – \overrightarrow b } \right| = \sqrt {19} $

    $\left| {2\overrightarrow a  + 3\overrightarrow b } \right| = 6$

    Giải thích các bước giải:

    \(\begin{array}{l}
    {\left( {\overrightarrow a  – \overrightarrow b } \right)^2} = {\left( {\overrightarrow a } \right)^2} – 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2}\\
     = {a^2} + {b^2} – 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ;\overrightarrow b } \right)\\
     = {3^2} + {2^2} – 2.3.2\cos {120^0}\\
     = 19\\
     \Rightarrow \left| {\overrightarrow a  – \overrightarrow b } \right| = \sqrt {19} \\
    {\left( {2\overrightarrow a  + 3\overrightarrow b } \right)^2} = {\left( {2\overrightarrow a } \right)^2} + 2.2\overrightarrow a .3\overrightarrow b  + {\left( {3\overrightarrow b } \right)^2}\\
     = 4{a^2} + 9{b^2} + 12\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ;\overrightarrow b } \right)\\
     = {4.3^2} + {9.2^2} +12.3.2\cos {120^0}\\
     = 36\\
     \Rightarrow \left| {2\overrightarrow a  + 3\overrightarrow b } \right| = 6 
    \end{array}\)

    Bình luận

Viết một bình luận