cho △ vuông ABC tại A, AB=6, AC=8
a, tính độ dài vectơ AB và độ dài vectơ BC
b) gọi M là trung điểm AC. tính độ dài vectơ BM
c) gọi I là trung điểm BM, AI cắt BC tại E. tính độ dài vectơ BE
cho △ vuông ABC tại A, AB=6, AC=8
a, tính độ dài vectơ AB và độ dài vectơ BC
b) gọi M là trung điểm AC. tính độ dài vectơ BM
c) gọi I là trung điểm BM, AI cắt BC tại E. tính độ dài vectơ BE
Đáp án:
Giải thích các bước giải:
$$\eqalign{
& a)\,\,\left| {\overrightarrow {AB} } \right| = AB = 6 \cr
& \,\,\,\,\,\left| {\overrightarrow {BC} } \right| = BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{6^2} + {8^2}} = \sqrt {100} = 10 \cr
& b)\,\,AM = {1 \over 2}AC = 4 \cr
& Xet\,\,tam\,\,giac\,\,vuong\,\,ABM: \cr
& B{M^2} = A{B^2} + B{M^2} = {6^2} + {4^2} = 52 \cr
& \Rightarrow BM = \sqrt {52} = 2\sqrt {13} \cr
& \Rightarrow \left| {\overrightarrow {BM} } \right| = BM = 2\sqrt {13} \cr} $$
c) Kẻ IK // BC (K thuộc AC)
Áp dụng tính chất đường TB => K là trung điểm của MC
$$\eqalign{
& \Rightarrow {{IK} \over {EC}} = {{AK} \over {AC}} = {3 \over 4} \cr
& \Rightarrow IK = {3 \over 4}EC \cr
& Ma\,\,IK = {1 \over 2}BC \cr
& \Rightarrow {3 \over 4}EC = {1 \over 2}BC \Rightarrow EC = {2 \over 3}BC \cr
& \Rightarrow BE = {1 \over 3}BC \cr
& \Rightarrow \left| {\overrightarrow {BE} } \right| = {1 \over 3}\left| {\overrightarrow {BC} } \right| = {1 \over 3}.BC = {{10} \over 3} \cr} $$