cho x+y=a ,x.y=b tính theo a và b a)x^2+y^2 b)x^3+y^3 c)x^4+y^4 d)x^5+y^5 12/08/2021 Bởi Liliana cho x+y=a ,x.y=b tính theo a và b a)x^2+y^2 b)x^3+y^3 c)x^4+y^4 d)x^5+y^5
`a)x^2+y^2` `=(x+y)^2-2xy` `=a^2-2b` `b)x^3+y^3` `=(x+y)(x^2+xy+y^2)` `=a.(a^2-2b+b)` `=a(a^2-b)` `=a^3-ab `c)x^4+y^4` `=(x^2+y^2)^2-2x^2y^2` `=(a^2-2b)^2-2b^2` `=a^4-4a^2b+4b^2-2b^2` `=a^4-4a^2b+2a^2b` `d)x^5+y^5` `=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)` `=(a^2-2b)(a^3-ab)-b^2.a` `=a^5-a^3b-2a^3b+2ab^2-ab^2` `=a^5-3a^3b+ab^2` Bình luận
Đáp án: Giải thích các bước giải: \(a,x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\) \(b,x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\) \(=\left(x+y\right)\left[\left(x+y\right)^2-2xy-xy\right]\) \(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\) \(=a.\left(a^2-3b\right)\) \(=a^3-3ab\) Theo phần a, \(x^2+y^2=a^2-b\) Ta có: \(c) x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-b\right)^2-2b^2\) d) $x^5+y^5=\left ( x^4+y^4 \right )\left ( x+y \right )-xy^4-x^4y=\left [ \left ( x+y^2 \right )-2xy \right ]\left ( x+y \right )-xy\left ( x^3+y^3 \right )=\left [ \left ( x+y^2 \right )-2xy \right ]\left ( x+y \right )-xy\left [ \left ( x+y \right )^3-3xy\left ( x+y \right ) \right ]$ Bình luận
`a)x^2+y^2`
`=(x+y)^2-2xy`
`=a^2-2b`
`b)x^3+y^3`
`=(x+y)(x^2+xy+y^2)`
`=a.(a^2-2b+b)`
`=a(a^2-b)`
`=a^3-ab
`c)x^4+y^4`
`=(x^2+y^2)^2-2x^2y^2`
`=(a^2-2b)^2-2b^2`
`=a^4-4a^2b+4b^2-2b^2`
`=a^4-4a^2b+2a^2b`
`d)x^5+y^5`
`=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)`
`=(a^2-2b)(a^3-ab)-b^2.a`
`=a^5-a^3b-2a^3b+2ab^2-ab^2`
`=a^5-3a^3b+ab^2`
Đáp án:
Giải thích các bước giải:
\(a,x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
\(b,x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-2xy-xy\right]\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
\(=a.\left(a^2-3b\right)\)
\(=a^3-3ab\)
Theo phần a,
\(x^2+y^2=a^2-b\)
Ta có:
\(c) x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-b\right)^2-2b^2\)
d) $x^5+y^5=\left ( x^4+y^4 \right )\left ( x+y \right )-xy^4-x^4y=\left [ \left ( x+y^2 \right )-2xy \right ]\left ( x+y \right )-xy\left ( x^3+y^3 \right )=\left [ \left ( x+y^2 \right )-2xy \right ]\left ( x+y \right )-xy\left [ \left ( x+y \right )^3-3xy\left ( x+y \right ) \right ]$