Cho x, y thỏa mãn $\sqrt[]{x+y-\frac{2}{3}}$ = $\sqrt[]{x}$ + $\sqrt[]{y}$ – $\sqrt[]{\frac{2}{3}}$. Giá trị xy = ….

Cho x, y thỏa mãn $\sqrt[]{x+y-\frac{2}{3}}$ = $\sqrt[]{x}$ + $\sqrt[]{y}$ – $\sqrt[]{\frac{2}{3}}$. Giá trị xy = ….

0 bình luận về “Cho x, y thỏa mãn $\sqrt[]{x+y-\frac{2}{3}}$ = $\sqrt[]{x}$ + $\sqrt[]{y}$ – $\sqrt[]{\frac{2}{3}}$. Giá trị xy = ….”

  1. Đáp án: $xy = 0$

     

    Giải thích các bước giải:

    $\sqrt[]{x + y – \frac{2}{3} } = \sqrt[]{x} + \sqrt[]{y} – \sqrt[]{\frac{2}{3}} $

    $⇔ x + y – \frac{2}{3} = (\sqrt[]{x} + \sqrt[]{y} – \sqrt[]{\frac{2}{3}})² $

    $⇔ (\sqrt[]{x})² – (\sqrt[]{\frac{2}{3}})² + (\sqrt[]{y})² –  (\sqrt[]{x} + \sqrt[]{y} – \sqrt[]{\frac{2}{3}})² = 0$

    $⇔ (\sqrt[]{x} – \sqrt[]{\frac{2}{3}})(\sqrt[]{x} + \sqrt[]{\frac{2}{3}}) – (\sqrt[]{x} – \sqrt[]{\frac{2}{3}})(\sqrt[]{x} + 2\sqrt[]{y} – \sqrt[]{\frac{2}{3}}) = 0 $

    $⇔ 2(\sqrt[]{x} – \sqrt[]{\frac{2}{3}})(\sqrt[]{\frac{2}{3}} – \sqrt[]{y}) = 0 $

    @ $ \sqrt[]{x} – \sqrt[]{\frac{2}{3}} = 0 ⇔ x = \frac{2}{3} ⇒ y = 0 ⇒ xy = 0$

    @ $ \sqrt[]{\frac{2}{3}} – \sqrt[]{y} = 0 ⇔ y = \frac{2}{3} ⇒ x = 0 ⇒ xy = 0$

    Bình luận

Viết một bình luận