cho x+y+z=0,xy+yz+zx=1 tinh p=x^2(1+y^2).(1+z^2)/(1+x^2) + y^2(1+z^2)(1+x^2)/(1+y^2) + z^2(1+x^2)(1+y^2)/1+z^2 20/07/2021 Bởi Alaia cho x+y+z=0,xy+yz+zx=1 tinh p=x^2(1+y^2).(1+z^2)/(1+x^2) + y^2(1+z^2)(1+x^2)/(1+y^2) + z^2(1+x^2)(1+y^2)/1+z^2
Đáp án: Giải thích các bước giải: `P=[x^2(1+y^2).(1+z^2)]/(1+x^2) + [y^2(1+z^2)(1+x^2)]/(1+y^2) + [z^2(1+x^2)(1+y^2)]/(1+z^2)` `+)[x^2(1+y^2).(1+z^2)]/(1+x^2)` `=[x^2(y^2+xy+yz+zx)(z^2+xy+yz+zx)]/(x^2+xy+yz+zx)` `=[x^2(x+y)(y+z)(x+z)(y+z)]/[(x+y)(x+z)]` `=x^2(y+z)^2` CMTT `[y^2(1+z^2)(1+x^2)]/(1+y^2)=y^2(z+x)^2` `[z^2(1+x^2)(1+y^2)]/(1+z^2)=z^2(x+y)^2` Cộng từng vế ta có `P=x^2(y+z)^2+y^2(z+x)^2+z^2(x+y)^2` `x+y+z=0=>y+z=-x,x+y=-z,x+z=-y` `P=x^2(-x)+y^2(-y)+z^2(-z)` `=-x^3-y^3-z^3` `=-(x^3+y^3+z^3)` `=-[(x+y)^3+z^3-3xy(x+y)]` `=-[(x+y+z)(x^2+y^2+z^2+2xy-xz-yz)-3xy(-z)]` `=-[0+3xyz]` `=-3xyz` Bình luận
Đáp án:
Giải thích các bước giải:
`P=[x^2(1+y^2).(1+z^2)]/(1+x^2) + [y^2(1+z^2)(1+x^2)]/(1+y^2) + [z^2(1+x^2)(1+y^2)]/(1+z^2)`
`+)[x^2(1+y^2).(1+z^2)]/(1+x^2)`
`=[x^2(y^2+xy+yz+zx)(z^2+xy+yz+zx)]/(x^2+xy+yz+zx)`
`=[x^2(x+y)(y+z)(x+z)(y+z)]/[(x+y)(x+z)]` `=x^2(y+z)^2`
CMTT
`[y^2(1+z^2)(1+x^2)]/(1+y^2)=y^2(z+x)^2` `[z^2(1+x^2)(1+y^2)]/(1+z^2)=z^2(x+y)^2`
Cộng từng vế ta có `P=x^2(y+z)^2+y^2(z+x)^2+z^2(x+y)^2`
`x+y+z=0=>y+z=-x,x+y=-z,x+z=-y`
`P=x^2(-x)+y^2(-y)+z^2(-z)`
`=-x^3-y^3-z^3` `=-(x^3+y^3+z^3)`
`=-[(x+y)^3+z^3-3xy(x+y)]`
`=-[(x+y+z)(x^2+y^2+z^2+2xy-xz-yz)-3xy(-z)]`
`=-[0+3xyz]` `=-3xyz`