cho x/y+z + y/z+x +z/x+y =1. Tính S=x^2/y+z +y^2/z+x + z^2/x+y

cho x/y+z + y/z+x +z/x+y =1. Tính S=x^2/y+z +y^2/z+x + z^2/x+y

0 bình luận về “cho x/y+z + y/z+x +z/x+y =1. Tính S=x^2/y+z +y^2/z+x + z^2/x+y”

  1. ta có x/y+z + y/x+z + z/x+y =1

    => (x+y+z)(x/y+z + y/x+z + z/x+y) = x+y+z 

    => x²+x(y+z)/y+z +y²+y(x+z)/x+z + z²+z(x+y)/x+y = x+y+z

    => x²/y+z + x+ y²/x+z +y+ z²/x+y + z  = x+ y+z

    => x²/y+z + y²/x+z + z²/x+y = 0

    vậy S = 0

     

    Bình luận
  2. Ta có: `x/(y+z)+y/(x+z)+z/(x+y)=1`

    `⇒(x+y+z)(x/(y+z)+y/(x+z)+z/(x+y))=x+y+z`

    `⇒(x^2+x(y+z))/(y+z)+(y^2+y(x+z))/(x+z)+(z^2+z(x+y))/(x+y)=x+y+z`

    `⇒x^2/(y+z)+x+y^2/(z+x)+y+z^2/(x+y)+z=x+y+z`

    `⇒x^2/(y+z)+y^2/(z+x)+z^2/(x+y)=0`

    Vậy `S=0`

     

    Bình luận

Viết một bình luận