Chứng minh 1/2^2 + 1/3^2 +…+ 1/100^2 < 1 17/08/2021 Bởi Elliana Chứng minh 1/2^2 + 1/3^2 +…+ 1/100^2 < 1
Giả sử: $A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+…+\dfrac{1}{100^2}$ Ta có: $\dfrac{1}{2^2}<\dfrac{1}{1.2}$ ……. $\dfrac{1}{100^2}<\dfrac{1}{99.100}$ $⇒A<\dfrac{1}{1.2}+….+\dfrac{1}{99.100}$ $⇒A<1-\dfrac{1}{2}+….+\dfrac{1}{99}-\dfrac{1}{100}$ $⇒A<1-\dfrac{1}{100}$ $⇒A<\dfrac{99}{100}$ mà $\dfrac{99}{100}<1$ $⇒A<1$ Vậy $\dfrac{1}{2^2}+\dfrac{1}{3^2}+…+\dfrac{1}{100^2}<1$ Bình luận
Đáp án: $\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\dfrac{1}{4^{2}}+…+\dfrac{1}{100^{2}}<1$ Giải thích các bước giải: Đặt $A=\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\dfrac{1}{4^{2}}+…+\dfrac{1}{100^{2}}$Ta có: $\dfrac{1}{2^{2}}<\dfrac{1}{1.2}$$\dfrac{1}{3^{2}}<\dfrac{1}{2.3}$$\dfrac{1}{4^{2}}<\dfrac{1}{3.4}$…$\dfrac{1}{100^{2}}<\dfrac{1}{99.100}$$\Rightarrow A<\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+…+\dfrac{1}{99.100}$$\Leftrightarrow A<1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+…+\dfrac{1}{99}-\dfrac{1}{100}$$\Leftrightarrow A<1-\dfrac{1}{100}$$\Leftrightarrow A<\dfrac{99}{100}$mà $\dfrac{99}{100}<1$$\Rightarrow A<1$ Bình luận
Giả sử: $A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+…+\dfrac{1}{100^2}$
Ta có:
$\dfrac{1}{2^2}<\dfrac{1}{1.2}$
…….
$\dfrac{1}{100^2}<\dfrac{1}{99.100}$
$⇒A<\dfrac{1}{1.2}+….+\dfrac{1}{99.100}$
$⇒A<1-\dfrac{1}{2}+….+\dfrac{1}{99}-\dfrac{1}{100}$
$⇒A<1-\dfrac{1}{100}$
$⇒A<\dfrac{99}{100}$
mà $\dfrac{99}{100}<1$
$⇒A<1$
Vậy $\dfrac{1}{2^2}+\dfrac{1}{3^2}+…+\dfrac{1}{100^2}<1$
Đáp án: $\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\dfrac{1}{4^{2}}+…+\dfrac{1}{100^{2}}<1$
Giải thích các bước giải:
Đặt $A=\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\dfrac{1}{4^{2}}+…+\dfrac{1}{100^{2}}$
Ta có:
$\dfrac{1}{2^{2}}<\dfrac{1}{1.2}$
$\dfrac{1}{3^{2}}<\dfrac{1}{2.3}$
$\dfrac{1}{4^{2}}<\dfrac{1}{3.4}$
…
$\dfrac{1}{100^{2}}<\dfrac{1}{99.100}$
$\Rightarrow A<\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+…+\dfrac{1}{99.100}$
$\Leftrightarrow A<1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+…+\dfrac{1}{99}-\dfrac{1}{100}$
$\Leftrightarrow A<1-\dfrac{1}{100}$
$\Leftrightarrow A<\dfrac{99}{100}$
mà $\dfrac{99}{100}<1$
$\Rightarrow A<1$