chứng minh 1-2sin^2x/1+sin2x=1-tanx/1+tanx 26/07/2021 Bởi Gabriella chứng minh 1-2sin^2x/1+sin2x=1-tanx/1+tanx
$VT=\dfrac{1-2\sin^2x}{1+\sin2x}$ $=\dfrac{\cos^2x-\sin^2x}{\sin^2x+2\sin x\cos x+\cos^2x}$ $=\dfrac{(\cos x+\sin x)(\cos x-\sin x)}{(\cos x+\sin x)^2}$ $=\dfrac{\cos x-\sin x}{\cos x+\sin x}$ Chia tử, mẫu cho $\cos x$: $=\dfrac{1-\tan x}{1+\tan x}$ $=VP$ Bình luận
Đáp án: dpcm Giải thích các bước giải: \(\begin{array}{l}\dfrac{{1 – 2{{\sin }^2}x}}{{1 + \sin 2x}} = \dfrac{{1 – {{\sin }^2}x – {{\sin }^2}x}}{{{{\sin }^2}x + {{\cos }^2}x + 2\sin x.\cos x}}\\ = \dfrac{{{{\cos }^2}x – {{\sin }^2}x}}{{{{\left( {\cos x + \sin x} \right)}^2}}}\\ = \dfrac{{\left( {\cos x – \sin x} \right)\left( {\cos x + \sin x} \right)}}{{{{\left( {\cos x + \sin x} \right)}^2}}}\\ = \dfrac{{\cos x – \sin x}}{{\cos x + \sin x}}\left( 1 \right)\\\dfrac{{1 – \tan x}}{{1 + \tan x}} = \left( {1 – \dfrac{{\sin x}}{{\cos x}}} \right):\left( {1 + \dfrac{{\sin x}}{{\cos x}}} \right)\\ = \left( {\dfrac{{\cos x – \sin x}}{{\cos x}}} \right):\left( {\dfrac{{\cos x + \sin x}}{{\cos x}}} \right)\\ = \dfrac{{\cos x – \sin x}}{{\cos x}}.\dfrac{{\cos x}}{{\cos x + \sin x}}\\ = \dfrac{{\cos x – \sin x}}{{\cos x + \sin x}}\left( 2 \right)\end{array}\) Từ (1) và (2) ⇒ dpcm Bình luận
$VT=\dfrac{1-2\sin^2x}{1+\sin2x}$
$=\dfrac{\cos^2x-\sin^2x}{\sin^2x+2\sin x\cos x+\cos^2x}$
$=\dfrac{(\cos x+\sin x)(\cos x-\sin x)}{(\cos x+\sin x)^2}$
$=\dfrac{\cos x-\sin x}{\cos x+\sin x}$
Chia tử, mẫu cho $\cos x$:
$=\dfrac{1-\tan x}{1+\tan x}$
$=VP$
Đáp án:
dpcm
Giải thích các bước giải:
\(\begin{array}{l}
\dfrac{{1 – 2{{\sin }^2}x}}{{1 + \sin 2x}} = \dfrac{{1 – {{\sin }^2}x – {{\sin }^2}x}}{{{{\sin }^2}x + {{\cos }^2}x + 2\sin x.\cos x}}\\
= \dfrac{{{{\cos }^2}x – {{\sin }^2}x}}{{{{\left( {\cos x + \sin x} \right)}^2}}}\\
= \dfrac{{\left( {\cos x – \sin x} \right)\left( {\cos x + \sin x} \right)}}{{{{\left( {\cos x + \sin x} \right)}^2}}}\\
= \dfrac{{\cos x – \sin x}}{{\cos x + \sin x}}\left( 1 \right)\\
\dfrac{{1 – \tan x}}{{1 + \tan x}} = \left( {1 – \dfrac{{\sin x}}{{\cos x}}} \right):\left( {1 + \dfrac{{\sin x}}{{\cos x}}} \right)\\
= \left( {\dfrac{{\cos x – \sin x}}{{\cos x}}} \right):\left( {\dfrac{{\cos x + \sin x}}{{\cos x}}} \right)\\
= \dfrac{{\cos x – \sin x}}{{\cos x}}.\dfrac{{\cos x}}{{\cos x + \sin x}}\\
= \dfrac{{\cos x – \sin x}}{{\cos x + \sin x}}\left( 2 \right)
\end{array}\)
Từ (1) và (2) ⇒ dpcm