Chứng Minh 1/3-2/3^2+3/3^3-4/3^4+……+99/3^99-100/3^100<3/16 11/08/2021 Bởi Charlie Chứng Minh 1/3-2/3^2+3/3^3-4/3^4+……+99/3^99-100/3^100<3/16
Đáp án: Giải thích các bước giải: →3A=1-2/3+3/3^2-4/3^3+…+99/3^98-100/3^99 4A=3A+A=(1-2/3+3/3^2-4/3^3+…+99/3^98-100/3^99)+(1/3-2/3^2+…+99/3^99-100/3^100) 4A=1-1/3+1/3^2-1/3^3+…+1/3^98-1/3^99-100/3^100 12A=3-1+…+1/3^97-1/3^98-100/3^99 16A=4A+12A=(1-1/3+1/3^2-1/3^3+…+1/3^98-1/3^99-100/3^100)+(3-1+…+1/3^97-1/3^98-100/3^99) 16A=3-101/3^99-100/3^100<3 16A<3 A<3:16=3/16 Vậy A<3/16 Bình luận
Đáp án: $\text { Bạn xem cách làm dưới và THAM KHẢO thôi nhé !! }$ Giải thích các bước giải: Đặt `A = 1/3 – 2/(3^2) + 3/(3^3) – 4/(3^4) + … + 99/(3^99) – 100/(3^100)` `⇒ 3A = 1 – 2/3 + 3/(3^2) – 4/(3^3) + … + 99/(3^98) – 100/(3^99)` `⇒ 3A + A = 1 – 1/3 + 1/(3^2) – 1/(3^3) + … + 1/(3^99) – 100/(3^100)` `⇒ 4A = 1 – 1/3 + 1/(3^2) – 1/(3^3) + … + 1/(3^99) – 100/(3^100)` `⇒ 12A = 3 – 1 + 1/3 – 1/(3^2) + … + 1/(3^98) – 100/(3^99)` `⇒ 12A + 4A = 3 – 101/(3^99) – 100/(3^100)` `⇒ 16A = 3 – 101/(3^99) – 100/(3^100)` `⇒ A = (3 – 101/(3^99) – 100/(3^100))/16` `⇒ A = 3/16 – (101/(3^99) + 100/(3^100))/16` `< 3/16` `⇒ đpcm` Bình luận
Đáp án:
Giải thích các bước giải:
→3A=1-2/3+3/3^2-4/3^3+…+99/3^98-100/3^99
4A=3A+A=(1-2/3+3/3^2-4/3^3+…+99/3^98-100/3^99)+(1/3-2/3^2+…+99/3^99-100/3^100)
4A=1-1/3+1/3^2-1/3^3+…+1/3^98-1/3^99-100/3^100
12A=3-1+…+1/3^97-1/3^98-100/3^99
16A=4A+12A=(1-1/3+1/3^2-1/3^3+…+1/3^98-1/3^99-100/3^100)+(3-1+…+1/3^97-1/3^98-100/3^99)
16A=3-101/3^99-100/3^100<3
16A<3
A<3:16=3/16
Vậy A<3/16
Đáp án: $\text { Bạn xem cách làm dưới và THAM KHẢO thôi nhé !! }$
Giải thích các bước giải:
Đặt `A = 1/3 – 2/(3^2) + 3/(3^3) – 4/(3^4) + … + 99/(3^99) – 100/(3^100)`
`⇒ 3A = 1 – 2/3 + 3/(3^2) – 4/(3^3) + … + 99/(3^98) – 100/(3^99)`
`⇒ 3A + A = 1 – 1/3 + 1/(3^2) – 1/(3^3) + … + 1/(3^99) – 100/(3^100)`
`⇒ 4A = 1 – 1/3 + 1/(3^2) – 1/(3^3) + … + 1/(3^99) – 100/(3^100)`
`⇒ 12A = 3 – 1 + 1/3 – 1/(3^2) + … + 1/(3^98) – 100/(3^99)`
`⇒ 12A + 4A = 3 – 101/(3^99) – 100/(3^100)`
`⇒ 16A = 3 – 101/(3^99) – 100/(3^100)`
`⇒ A = (3 – 101/(3^99) – 100/(3^100))/16`
`⇒ A = 3/16 – (101/(3^99) + 100/(3^100))/16` `< 3/16`
`⇒ đpcm`