chứng minh : 1. ║a ║ + ║ b║ ≥ ║a + b ║ 2. ║a ║ – ║b ║ ≤ ║a – b ║ 25/07/2021 Bởi Kylie chứng minh : 1. ║a ║ + ║ b║ ≥ ║a + b ║ 2. ║a ║ – ║b ║ ≤ ║a – b ║
Giải thích các bước giải: \[\begin{array}{l}1,\\\left| a \right| + \left| b \right| \ge \left| {a + b} \right|\\ \Leftrightarrow {\left( {\left| a \right| + \left| b \right|} \right)^2} \ge \left( {{{\left| {a + b} \right|}}} \right)^2\\ \Leftrightarrow {a^2} + {b^2} + 2\left| {ab} \right| \ge {a^2} + {b^2} + 2ab\\ \Leftrightarrow \left| {ab} \right| \ge ab\;(1)\end{array}\] Vì $\left(1\right)$ luôn đúng nên ta có điều phải chứng minh \[\begin{array}{l}2,\\\left| a \right| – \left| b \right| \le \left| {a – b} \right|\\ \Leftrightarrow {\left( {\left| a \right| – \left| b \right|} \right)^2} \le {\left( {\left| {a – b} \right|} \right)^2}\\ \Leftrightarrow {a^2} + {b^2} – 2\left| {ab} \right| \le {\left( {a – b} \right)^2}\\ \Leftrightarrow {a^2} + {b^2} – 2\left| {ab} \right| \le {a^2} + {b^2} – 2ab\\ \Leftrightarrow – 2\left| {ab} \right| \le – 2ab\\ \Leftrightarrow \left| {ab} \right| \ge ab\;(2)\end{array}\] Vì $\left(2\right)$ luôn đúng nên ta có điều phải chứng minh Bình luận
Giải thích các bước giải:
\[\begin{array}{l}
1,\\
\left| a \right| + \left| b \right| \ge \left| {a + b} \right|\\
\Leftrightarrow {\left( {\left| a \right| + \left| b \right|} \right)^2} \ge \left( {{{\left| {a + b} \right|}}} \right)^2\\
\Leftrightarrow {a^2} + {b^2} + 2\left| {ab} \right| \ge {a^2} + {b^2} + 2ab\\
\Leftrightarrow \left| {ab} \right| \ge ab\;(1)
\end{array}\]
Vì $\left(1\right)$ luôn đúng nên ta có điều phải chứng minh
\[\begin{array}{l}
2,\\
\left| a \right| – \left| b \right| \le \left| {a – b} \right|\\
\Leftrightarrow {\left( {\left| a \right| – \left| b \right|} \right)^2} \le {\left( {\left| {a – b} \right|} \right)^2}\\
\Leftrightarrow {a^2} + {b^2} – 2\left| {ab} \right| \le {\left( {a – b} \right)^2}\\
\Leftrightarrow {a^2} + {b^2} – 2\left| {ab} \right| \le {a^2} + {b^2} – 2ab\\
\Leftrightarrow – 2\left| {ab} \right| \le – 2ab\\
\Leftrightarrow \left| {ab} \right| \ge ab\;(2)
\end{array}\]
Vì $\left(2\right)$ luôn đúng nên ta có điều phải chứng minh