chứng minh x ²+2x+2>0 với mọi x x ²-x+1>0 với mọi x -x ²+4x-5 <0 với mọi x 11/07/2021 Bởi Adalyn chứng minh x ²+2x+2>0 với mọi x x ²-x+1>0 với mọi x -x ²+4x-5 <0 với mọi x
a) $x^2+2x+2$ $=x^2+2x.1+1^2+1$ $=(x+1)^2+1$ Vì $(x+1)^2≥0$ $→(x+1)^2+1>0∀x$ b) $x^2-x+1$ $=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}$ $=(x-\dfrac{1}{2})^2+\dfrac{3}{4}$ Vì $(x-\dfrac{1}{2})^2≥0$ $→(x-\dfrac{1}{2})^2+\dfrac{3}{4}>0∀x$ c) $-x^2+4x-5$ $=-(x^2-2.2.x+4.1)$ $=-(x-2)^2-1$ Vì $-(x-2)^2≤0$ $→-(x-2)^2-1<0∀x$ Bình luận
a) $x^2 + 2x + 2$ $=x^2 + 2x + 1 +1 $ $= (x + 1)^2 +1$ Ta có: $(x+1)^2 \geq 0, \, \forall x$ $\to (x+1)^2 +1 >0\, \forall x$ b) $x^2 – x + 1$ $=x^2 – 2.\dfrac{1}{2}x + \dfrac{1}{4} + \dfrac{3}{4}$ $= \left(x – \dfrac{1}{2}\right)^2 + \dfrac{3}{4}$ Ta có: $ \left(x – \dfrac{1}{2}\right)^2 \geq 0, \,\forall x$ $\to \left(x – \dfrac{1}{2}\right)^2 + \dfrac{3}{4} >0, \,\forall x$ c) $-x^2 + 4x – 5$ $= -x^2 + 4x – 4 – 1$ $= -(x^2 – 4x + 4) – 1$ $= -(x-2)^2 – 1$ Ta có: $(x-2)^2 \geq 0, \,\forall x$ $\to -(x-2)^2 \leq 0,\,\forall x$ $\to -(x-2)^2 – 1 < 0, \,\forall x$ Bình luận
a) $x^2+2x+2$
$=x^2+2x.1+1^2+1$
$=(x+1)^2+1$
Vì $(x+1)^2≥0$
$→(x+1)^2+1>0∀x$
b) $x^2-x+1$
$=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}$
$=(x-\dfrac{1}{2})^2+\dfrac{3}{4}$
Vì $(x-\dfrac{1}{2})^2≥0$
$→(x-\dfrac{1}{2})^2+\dfrac{3}{4}>0∀x$
c) $-x^2+4x-5$
$=-(x^2-2.2.x+4.1)$
$=-(x-2)^2-1$
Vì $-(x-2)^2≤0$
$→-(x-2)^2-1<0∀x$
a) $x^2 + 2x + 2$
$=x^2 + 2x + 1 +1 $
$= (x + 1)^2 +1$
Ta có:
$(x+1)^2 \geq 0, \, \forall x$
$\to (x+1)^2 +1 >0\, \forall x$
b) $x^2 – x + 1$
$=x^2 – 2.\dfrac{1}{2}x + \dfrac{1}{4} + \dfrac{3}{4}$
$= \left(x – \dfrac{1}{2}\right)^2 + \dfrac{3}{4}$
Ta có:
$ \left(x – \dfrac{1}{2}\right)^2 \geq 0, \,\forall x$
$\to \left(x – \dfrac{1}{2}\right)^2 + \dfrac{3}{4} >0, \,\forall x$
c) $-x^2 + 4x – 5$
$= -x^2 + 4x – 4 – 1$
$= -(x^2 – 4x + 4) – 1$
$= -(x-2)^2 – 1$
Ta có:
$(x-2)^2 \geq 0, \,\forall x$
$\to -(x-2)^2 \leq 0,\,\forall x$
$\to -(x-2)^2 – 1 < 0, \,\forall x$