chứng minh đẳng (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=2^32 -1 26/07/2021 Bởi Aubrey chứng minh đẳng (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=2^32 -1
Đáp án: Giải thích các bước giải: `(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)` `=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)` `=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)` `=(2^4-1)(2^4+1)(2^8+1)(2^16+1)` `=(2^8-1)(2^8+1)(2^16+1)` `=(2^16-1)(2^16+1)` `=2^32 -1(ĐPCM)` Bình luận
Đáp án: Ta có: (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1) =1.(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1) =(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1) =(2²-1²)(2^2+1)(2^4+1)(2^8+1)(2^16+1) =(2^4-1^4)(2^4+1)(2^8+1)(2^16+1) =(2^8-1^8)(2^8+1)(2^16+1) =(2^16-1^16)(2^16+1) =2^32-1^32 =2^32-1(ĐPCM) XIN TLHN VÀ 5* NHÉ Bình luận
Đáp án:
Giải thích các bước giải:
`(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)`
`=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)`
`=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)`
`=(2^4-1)(2^4+1)(2^8+1)(2^16+1)`
`=(2^8-1)(2^8+1)(2^16+1)`
`=(2^16-1)(2^16+1)`
`=2^32 -1(ĐPCM)`
Đáp án:
Ta có: (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=1.(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=(2²-1²)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=(2^4-1^4)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1^8)(2^8+1)(2^16+1)
=(2^16-1^16)(2^16+1)
=2^32-1^32
=2^32-1(ĐPCM)
XIN TLHN VÀ 5* NHÉ