chứng minh $\frac{1.2-1}{2!}$ +$\frac{2.3-1}{3!}$ +$\frac{3.4-1}{4!}$ +….+$\frac{99.100-1}{100!}$ < 2 15/08/2021 Bởi Natalia chứng minh $\frac{1.2-1}{2!}$ +$\frac{2.3-1}{3!}$ +$\frac{3.4-1}{4!}$ +….+$\frac{99.100-1}{100!}$ < 2
Giải thích các bước giải: Ta có: $A=\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+…+\dfrac{99.100-1}{100!}$ $\to A=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+….+\dfrac{99.100}{100!}-\dfrac{1}{100!}$ $\to A=(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+….+\dfrac{99.100}{100!})-(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+….+\dfrac{1}{100!})$ $\to A=(1+1+\dfrac1{2!}+…+\dfrac{1}{98!})-(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+….+\dfrac{1}{100!})$ $\to A=1+1-\dfrac{1}{99!}-\dfrac{1}{100!}$ $\to A=2-\dfrac{1}{99!}-\dfrac{1}{100!}$$\to A<2$ Bình luận
Ta có : A=1×2-1/2!+2×3-1/3!+3×4-1/4!+……..+99×100-1/100 => A=1×2/2!-1/2!+2×3/3!-1/3!+3×4/4!-1/4!+…………+99×100/100!-1/100! => A=(1×2/2!+2×3/3!+3×4/4!+…+99×100/100!)-(1/2!+1/3!+1/4!+….+1/100!) => A=(1+1+1/2!+…..+1/98!)-(1/2!+1/3!+1/4!+…+1/100!) => A=1+1-1/99!-1/100! => A= 2-1/99!-1/100! => A<2 vì 2=2 mà A= 2-1/99!-1/100! nên A<2 Bình luận
Giải thích các bước giải:
Ta có:
$A=\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+…+\dfrac{99.100-1}{100!}$
$\to A=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+….+\dfrac{99.100}{100!}-\dfrac{1}{100!}$
$\to A=(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+….+\dfrac{99.100}{100!})-(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+….+\dfrac{1}{100!})$
$\to A=(1+1+\dfrac1{2!}+…+\dfrac{1}{98!})-(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+….+\dfrac{1}{100!})$
$\to A=1+1-\dfrac{1}{99!}-\dfrac{1}{100!}$
$\to A=2-\dfrac{1}{99!}-\dfrac{1}{100!}$
$\to A<2$
Ta có :
A=1×2-1/2!+2×3-1/3!+3×4-1/4!+……..+99×100-1/100
=> A=1×2/2!-1/2!+2×3/3!-1/3!+3×4/4!-1/4!+…………+99×100/100!-1/100!
=> A=(1×2/2!+2×3/3!+3×4/4!+…+99×100/100!)-(1/2!+1/3!+1/4!+….+1/100!)
=> A=(1+1+1/2!+…..+1/98!)-(1/2!+1/3!+1/4!+…+1/100!)
=> A=1+1-1/99!-1/100!
=> A= 2-1/99!-1/100!
=> A<2
vì 2=2 mà A= 2-1/99!-1/100! nên A<2