chứng minh rằng 1-1/12+1/3-1/4+1/5-1/6+…+1/99-1/100=1/51+1/52+..+1/100 05/11/2021 Bởi Isabelle chứng minh rằng 1-1/12+1/3-1/4+1/5-1/6+…+1/99-1/100=1/51+1/52+..+1/100
Giải thích các bước giải: Ta có :$\dfrac{1}{1}-\dfrac12+\dfrac13-\dfrac14+\dfrac15-\dfrac16+…+\dfrac1{99}-\dfrac{1}{100}$ $=(\dfrac{1}{1}+\dfrac13+..+\dfrac1{99})-(\dfrac12+\dfrac14+\dfrac16+…+\dfrac{1}{100})$ $=(\dfrac{1}{1}+\dfrac13+..+\dfrac1{99})+(\dfrac12+\dfrac14+\dfrac16+…+\dfrac{1}{100})-2(\dfrac12+\dfrac14+\dfrac16+…+\dfrac{1}{100})$ $=(\dfrac{1}{1}+\dfrac12+\dfrac13+..+\dfrac1{99}+\dfrac{1}{100})-(\dfrac11+\dfrac12+\dfrac13+…+\dfrac{1}{50})$ $=\dfrac1{51}+\dfrac{1}{52}+…+\dfrac{1}{100}$ Bình luận
Giải thích các bước giải:
Ta có :
$\dfrac{1}{1}-\dfrac12+\dfrac13-\dfrac14+\dfrac15-\dfrac16+…+\dfrac1{99}-\dfrac{1}{100}$
$=(\dfrac{1}{1}+\dfrac13+..+\dfrac1{99})-(\dfrac12+\dfrac14+\dfrac16+…+\dfrac{1}{100})$
$=(\dfrac{1}{1}+\dfrac13+..+\dfrac1{99})+(\dfrac12+\dfrac14+\dfrac16+…+\dfrac{1}{100})-2(\dfrac12+\dfrac14+\dfrac16+…+\dfrac{1}{100})$
$=(\dfrac{1}{1}+\dfrac12+\dfrac13+..+\dfrac1{99}+\dfrac{1}{100})-(\dfrac11+\dfrac12+\dfrac13+…+\dfrac{1}{50})$
$=\dfrac1{51}+\dfrac{1}{52}+…+\dfrac{1}{100}$