Chứng minh rằng : 1/1.2 + 1/3.4 + 1/4.5 +…+ 1/(2n-1)2n = 1/n+1 + 1/n+2 +… + 1/2n

Chứng minh rằng : 1/1.2 + 1/3.4 + 1/4.5 +…+ 1/(2n-1)2n = 1/n+1 + 1/n+2 +… + 1/2n

0 bình luận về “Chứng minh rằng : 1/1.2 + 1/3.4 + 1/4.5 +…+ 1/(2n-1)2n = 1/n+1 + 1/n+2 +… + 1/2n”

  1. Đáp án:

    Giải thích các bước giải:

    $\quad\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{45}+…+\dfrac{1}{(2n-1)(2n)}\\

    =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+…+\dfrac{1}{2n-1}-\dfrac{1}{2n}\\

    =1+\dfrac{1}{3}+\dfrac{1}{5}+…+\dfrac{1}{2n-1}-(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{2n})\\

    =1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+…+\dfrac{1}{2n-1}+\dfrac{1}{2n}-2(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+…+\dfrac{1}{2n})\\

    =1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+…+\dfrac{1}{2n-1}+\dfrac{1}{2n}-(1+\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{n})\\

    =\dfrac{1}{n+1}+\dfrac{1}{n+2}+…+\dfrac{1}{2n}$

    Bình luận

Viết một bình luận