chứng minh rằng: 1/1.2+1/3.4+1/5.6+……+1/49.50=1/26+1/27+1/28+……+1/50 21/07/2021 Bởi Eliza chứng minh rằng: 1/1.2+1/3.4+1/5.6+……+1/49.50=1/26+1/27+1/28+……+1/50
Giải thích các bước giải: `1/(1.2)`+`1/(3.4)`+`1/(5.6)`+……+`1/(49.50)`=`1/26`+`1/27`+`1/28`+……+`1/50` =`1/1`-`1/2`+`1/3`-`1/4`+…………….+`1/49`-`1/50` =(`1/1`+`1/3`+……..+`1/49`)-(`1/2`+`1/4`+……..+`1/50`) =(`1/1`+`1/2`+`1/3`+……….+`1/49`+`1/50`) – 2(`1/2`+`1/4`+……..+`1/50`) =`1/1`+`1/2`+`1/3`+……….+`1/49`+`1/50` – `1/1` – `1/2` – ……….. – `1/25` =`1/26`+`1/27`+………….+`1/50` ⇒ `1/(1.2)`+`1/(3.4)`+`1/(5.6)`+……+`1/(49.50)`=`1/26`+`1/27`+`1/28`+……+`1/50` Bình luận
`Đáp` `án` + `Giải` `thích“các` `bước` `giải`: `$\frac{1}{1.2}$`+`$\frac{1}{3.4}$`+`$\frac{1}{5.6}$`+…+`$\frac{1}{49.50}$`=`$\frac{1}{26}$`+`$\frac{1}{27}$`+`$\frac{1}{28}$`+…+`$\frac{1}{50}$` =`1`- `$\frac{1}{2}$`+`$\frac{1}{3}$`-`$\frac{1}{4}$`+`$\frac{1}{5}$`-`$\frac{1}{6}$`+…+`$\frac{1}{49}$`-`$\frac{1}{50}$` =(`1`+`$\frac{1}{3}$`+`$\frac{1}{5}$`+…+`$\frac{1}{49}$`) – (`$\frac{1}{2}$`+`$\frac{1}{4}$`+`$\frac{1}{6}$`+…`$\frac{1}{50}$`) =(`1`+`$\frac{1}{3}$`+`$\frac{1}{5}$`+…+`$\frac{1}{50}$`) – `2`(`$\frac{1}{2}$`+`$\frac{1}{4}$`+`$\frac{1}{6}$`+…`$\frac{1}{50}$`) =(`1`+`$\frac{1}{3}$`+`$\frac{1}{5}$`+…+`$\frac{1}{50}$`) – (`$\frac{1}{2}$`+`$\frac{1}{3}$`+`$\frac{1}{5}$`+…`$\frac{1}{25}$`) =`$\frac{1}{26}$`+`$\frac{1}{27}$`+`$\frac{1}{28}$`+…+`$\frac{1}{50}$` `XIN` `HAY` `NHẤT` Bình luận
Giải thích các bước giải:
`1/(1.2)`+`1/(3.4)`+`1/(5.6)`+……+`1/(49.50)`=`1/26`+`1/27`+`1/28`+……+`1/50`
=`1/1`-`1/2`+`1/3`-`1/4`+…………….+`1/49`-`1/50`
=(`1/1`+`1/3`+……..+`1/49`)-(`1/2`+`1/4`+……..+`1/50`)
=(`1/1`+`1/2`+`1/3`+……….+`1/49`+`1/50`) – 2(`1/2`+`1/4`+……..+`1/50`)
=`1/1`+`1/2`+`1/3`+……….+`1/49`+`1/50` – `1/1` – `1/2` – ……….. – `1/25`
=`1/26`+`1/27`+………….+`1/50`
⇒ `1/(1.2)`+`1/(3.4)`+`1/(5.6)`+……+`1/(49.50)`=`1/26`+`1/27`+`1/28`+……+`1/50`
`Đáp` `án` + `Giải` `thích“các` `bước` `giải`:
`$\frac{1}{1.2}$`+`$\frac{1}{3.4}$`+`$\frac{1}{5.6}$`+…+`$\frac{1}{49.50}$`=`$\frac{1}{26}$`+`$\frac{1}{27}$`+`$\frac{1}{28}$`+…+`$\frac{1}{50}$`
=`1`- `$\frac{1}{2}$`+`$\frac{1}{3}$`-`$\frac{1}{4}$`+`$\frac{1}{5}$`-`$\frac{1}{6}$`+…+`$\frac{1}{49}$`-`$\frac{1}{50}$`
=(`1`+`$\frac{1}{3}$`+`$\frac{1}{5}$`+…+`$\frac{1}{49}$`) – (`$\frac{1}{2}$`+`$\frac{1}{4}$`+`$\frac{1}{6}$`+…`$\frac{1}{50}$`)
=(`1`+`$\frac{1}{3}$`+`$\frac{1}{5}$`+…+`$\frac{1}{50}$`) – `2`(`$\frac{1}{2}$`+`$\frac{1}{4}$`+`$\frac{1}{6}$`+…`$\frac{1}{50}$`)
=(`1`+`$\frac{1}{3}$`+`$\frac{1}{5}$`+…+`$\frac{1}{50}$`) – (`$\frac{1}{2}$`+`$\frac{1}{3}$`+`$\frac{1}{5}$`+…`$\frac{1}{25}$`)
=`$\frac{1}{26}$`+`$\frac{1}{27}$`+`$\frac{1}{28}$`+…+`$\frac{1}{50}$`
`XIN` `HAY` `NHẤT`