Chứng minh rằng: 1/2^2+1/3^2+1/4^2+…+1/N^2<3/4 16/08/2021 Bởi Gianna Chứng minh rằng: 1/2^2+1/3^2+1/4^2+…+1/N^2<3/4
Đáp án: Đặt A=122+132+...+1n2A=122+132+…+1n2 ⇒A=122+(132+..+1n2)⇒A=122+(132+..+1n2) ⇒A=122+B⇒A=122+B Xét:BB ⇒B=(132+..+1n2)<(12×3+..+1n(n+1⇒B=(132+..+1n2)<(12×3+..+1n(n+1 ADCT:kn(n+k)=1n−1n+kADCT:kn(n+k)=1n−1n+k ⇒B<12−13+..+1n−1n+1⇒B<12−13+..+1n−1n+1 ⇒B<12−1n+1⇒B<12−1n+1 Do đó:A=122+B<122+12−1n+1A=122+B<122+12−1n+1 ⇒A<34−1n+1⇒A<34−1n+1 Vì 34−1n+1<3434−1n+1<34 ⇒A<34 Giải thích các bước giải: Bình luận
Đáp án: Dưới Giải thích các bước giải: Đặt $A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+…+\dfrac{1}{n^2}$ $⇒A=\dfrac{1}{2^2}+(\dfrac{1}{3^2}+..+\dfrac{1}{n^2})$ $⇒A=\dfrac{1}{2^2}+B$ Xét:$B$ $⇒B=(\dfrac{1}{3^2}+..+\dfrac{1}{n^2})<(\dfrac{1}{2×3}+..+\dfrac{1}{n(n+1}$ $ADCT:\dfrac{k}{n(n+k)}=\dfrac{1}{n}-\dfrac{1}{n+k}$ $⇒B<\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{n}-\dfrac{1}{n+1}$ $⇒B<\dfrac{1}{2}-\dfrac{1}{n+1}$ Do đó:$A=\dfrac{1}{2^2}+B<\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{n+1}$ $⇒A<\dfrac{3}{4}-\dfrac{1}{n+1}$ Vì $\dfrac{3}{4}-\dfrac{1}{n+1}<\dfrac{3}{4}$ $⇒A<\dfrac{3}{4}$ Vậy đpcm Bình luận
Đáp án:
Đặt A=122+132+...+1n2A=122+132+…+1n2
⇒A=122+(132+..+1n2)⇒A=122+(132+..+1n2)
⇒A=122+B⇒A=122+B
Xét:BB
⇒B=(132+..+1n2)<(12×3+..+1n(n+1⇒B=(132+..+1n2)<(12×3+..+1n(n+1
ADCT:kn(n+k)=1n−1n+kADCT:kn(n+k)=1n−1n+k
⇒B<12−13+..+1n−1n+1⇒B<12−13+..+1n−1n+1
⇒B<12−1n+1⇒B<12−1n+1
Do đó:A=122+B<122+12−1n+1A=122+B<122+12−1n+1
⇒A<34−1n+1⇒A<34−1n+1
Vì 34−1n+1<3434−1n+1<34
⇒A<34
Giải thích các bước giải:
Đáp án:
Dưới
Giải thích các bước giải:
Đặt $A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+…+\dfrac{1}{n^2}$
$⇒A=\dfrac{1}{2^2}+(\dfrac{1}{3^2}+..+\dfrac{1}{n^2})$
$⇒A=\dfrac{1}{2^2}+B$
Xét:$B$
$⇒B=(\dfrac{1}{3^2}+..+\dfrac{1}{n^2})<(\dfrac{1}{2×3}+..+\dfrac{1}{n(n+1}$
$ADCT:\dfrac{k}{n(n+k)}=\dfrac{1}{n}-\dfrac{1}{n+k}$
$⇒B<\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{n}-\dfrac{1}{n+1}$
$⇒B<\dfrac{1}{2}-\dfrac{1}{n+1}$
Do đó:$A=\dfrac{1}{2^2}+B<\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{n+1}$
$⇒A<\dfrac{3}{4}-\dfrac{1}{n+1}$
Vì $\dfrac{3}{4}-\dfrac{1}{n+1}<\dfrac{3}{4}$
$⇒A<\dfrac{3}{4}$
Vậy đpcm