chứng minh rằng (9/11 – 0,81)^2003 = (9/11)^2003 . 1/10^4006 15/11/2021 Bởi Savannah chứng minh rằng (9/11 – 0,81)^2003 = (9/11)^2003 . 1/10^4006
Tham khảo Xét `(\frac{9}{11}-0,81)^{2003}=(\frac{9}{1100})^{2003}(1)` Xét `(\frac{9}{11})^{2003}×\frac{1}{10^{4006}}=(\frac{9}{11}×\frac{1}{100})^{2003}=(\frac{9}{1100})^{2003}(2)` Từ `(1)(2)⇒(\frac{9}{11}-0,81)^{2003}=(\frac{9}{11})^{2003}×\frac{1}{10^{4006}}` Vì cùng bằng `(\frac{9}{1100})^{2003}` Bình luận
Đáp án: Gia sử : `(9/11 – 0,81)^{2003} = (9/11)^{2003} . 1/10^{4006}` `= (900/1100 – 891/1100)^{2003} = (9/1100)^{2003} = (9/11 . 1/100)^{2003}` `= (9/11)^{2003} . (1/100)^{2003} = (9/11)^{2003} . 1/10^{4006}` `→ đpcm` Bình luận
Tham khảo
Xét `(\frac{9}{11}-0,81)^{2003}=(\frac{9}{1100})^{2003}(1)`
Xét `(\frac{9}{11})^{2003}×\frac{1}{10^{4006}}=(\frac{9}{11}×\frac{1}{100})^{2003}=(\frac{9}{1100})^{2003}(2)`
Từ `(1)(2)⇒(\frac{9}{11}-0,81)^{2003}=(\frac{9}{11})^{2003}×\frac{1}{10^{4006}}`
Vì cùng bằng `(\frac{9}{1100})^{2003}`
Đáp án:
Gia sử : `(9/11 – 0,81)^{2003} = (9/11)^{2003} . 1/10^{4006}`
`= (900/1100 – 891/1100)^{2003} = (9/1100)^{2003} = (9/11 . 1/100)^{2003}`
`= (9/11)^{2003} . (1/100)^{2003} = (9/11)^{2003} . 1/10^{4006}`
`→ đpcm`