chứng minh rằng: A = 2^1+ 2^2 + 2^3 + …….+ 2^2010 chia hết cho 3 và 7 30/07/2021 Bởi Hadley chứng minh rằng: A = 2^1+ 2^2 + 2^3 + …….+ 2^2010 chia hết cho 3 và 7
Bạn tham khảo : $A= 2^1+ 2^2 + 2^3 + …….+ 2^{2010}$ $A = (2^1+2^2)+(2^3+2^4) + … + 2^{2019}+2^{2020}$ $A= 2(1+2) + 2^3(1+3) + … + 2^{2019}(1+2)$ $A = 2.3 +2^3.3+2^{2019}.3$ $A = 3(2+2^3+…+2^{2019}$ chia hết cho $3$ $A= 2^1+ 2^2 + 2^3 + …….+ 2^{2010}$ $A = (2^1+2^2+2^3) +… + (2^{2008} + 2^{2009} + 2^{2010})$ $A= 2^1(1+2+2^2) + … + 2^{2008}(1+2+2^2)$ $A = 2^1 . 7 + … + 2^{2008}.7$ $A= 7(2^1 +…+2^{2008})$ chia hết cho $3$ Bình luận
+,A = 2^1+ 2^2 + 2^3 + …….+ 2^2010 A =(2^1+2^2)+(2^3+2^4)+………+(2^2001+2^2020) A =2.(1+2)+2^3.(1+2)+………+2^2009.(1+2) A =2.3+2^3.3+……….+2^2009.3 A =3.(2+2^3+…….+2^2009) vì 3 chia hết cho 3 ⇒A chia hết cho 3 +,A = 2^1+ 2^2 + 2^3 + …….+ 2^2010 A= (2^1 +2^2 +2^3)+(2^4+2^5+2^6)+……+(2^2008+2^2009+2^20010) A=2.(1+2+4)+2^4.(1+2+4)+…….+2^2008.(1+2+4) A=2.3+2^4.7+……….+2^2008.7 A=7.(2+2^4+……..+2^2008) mà 7 chia hết cho 7 ⇒A chia hết cho 7 Bình luận
Bạn tham khảo :
$A= 2^1+ 2^2 + 2^3 + …….+ 2^{2010}$
$A = (2^1+2^2)+(2^3+2^4) + … + 2^{2019}+2^{2020}$
$A= 2(1+2) + 2^3(1+3) + … + 2^{2019}(1+2)$
$A = 2.3 +2^3.3+2^{2019}.3$
$A = 3(2+2^3+…+2^{2019}$ chia hết cho $3$
$A= 2^1+ 2^2 + 2^3 + …….+ 2^{2010}$
$A = (2^1+2^2+2^3) +… + (2^{2008} + 2^{2009} + 2^{2010})$
$A= 2^1(1+2+2^2) + … + 2^{2008}(1+2+2^2)$
$A = 2^1 . 7 + … + 2^{2008}.7$
$A= 7(2^1 +…+2^{2008})$ chia hết cho $3$
+,A = 2^1+ 2^2 + 2^3 + …….+ 2^2010
A =(2^1+2^2)+(2^3+2^4)+………+(2^2001+2^2020)
A =2.(1+2)+2^3.(1+2)+………+2^2009.(1+2)
A =2.3+2^3.3+……….+2^2009.3
A =3.(2+2^3+…….+2^2009)
vì 3 chia hết cho 3
⇒A chia hết cho 3
+,A = 2^1+ 2^2 + 2^3 + …….+ 2^2010
A= (2^1 +2^2 +2^3)+(2^4+2^5+2^6)+……+(2^2008+2^2009+2^20010)
A=2.(1+2+4)+2^4.(1+2+4)+…….+2^2008.(1+2+4)
A=2.3+2^4.7+……….+2^2008.7
A=7.(2+2^4+……..+2^2008)
mà 7 chia hết cho 7
⇒A chia hết cho 7