chứng minh rằng: a^3+b^3=(a+b)^3-3ab(a+b) (a-b)^3+3ab(a-b)=a^3-b^3 (a+b)^2-(a-b)^2=4ab

chứng minh rằng:
a^3+b^3=(a+b)^3-3ab(a+b)
(a-b)^3+3ab(a-b)=a^3-b^3
(a+b)^2-(a-b)^2=4ab

  1. `text{Câu thứ nhất:}`

    `text{Ta có:}` `VP = (a + b)^3 – 3ab (a + b)`

    `= a^3 + 3a^2b + 3ab^2 + b^3 – 3a^2b – 3ab^2`

    `= a^3 + b^3 + (3a^2b – 3a^2b) + (3ab^2 – 3ab^2)`

    `= a^3 + b^3 = VT`

    `text{Câu thứ hai:}`

    `VT = (a – b)^3 + 3ab (a – b) `

    `= a^3 – 3a^2b + 3ab^2 – b^3 + 3a^2b – 3ab^2`

    `= a^3 – b^3 + (3a^2b – 3a^2b) + (3ab^2 – 3ab^2)`

    `= a^3 – b^3 = VP`

    `text{Câu cuối:}`

    `VT = (a + b)^2 – (a – b)^2`

    `= a^2 + 2ab + b^2 – (a^2 – 2ab + b^2)`

    `= a^2 + 2ab + b^2 – a^2 + 2ab – b^2`

    `= (a^2 – a^2) + (b^2 – b^2) + (2ab + 2ab)`

    `= 4ab = VP`

    Bình luận

Viết một bình luận