Chứng minh rằng: a)sinx+cosx= √ 2 sin(x+ $\frac{1}{a}$ $\pi$= √2 cos(x- $\frac{1}{4}$ $\pi$) b)sinx+ √3.cosx=2sin(x+ $\frac{1}{3}$ $\pi$)

Chứng minh rằng:
a)sinx+cosx= √ 2 sin(x+ $\frac{1}{a}$ $\pi$= √2 cos(x- $\frac{1}{4}$ $\pi$)
b)sinx+ √3.cosx=2sin(x+ $\frac{1}{3}$ $\pi$)

0 bình luận về “Chứng minh rằng: a)sinx+cosx= √ 2 sin(x+ $\frac{1}{a}$ $\pi$= √2 cos(x- $\frac{1}{4}$ $\pi$) b)sinx+ √3.cosx=2sin(x+ $\frac{1}{3}$ $\pi$)”

  1.  `a)` Sửa đề `\sqrt{2}sin(x+π/4)`

    Ta có:

    `\qquad \sqrt{2}sin(x+π/4)`

    `=\sqrt{2}. (sinxcos\ π/ 4 +cosx sin\ π/4)`

    `=\sqrt{2}.(sinx. 1/{\sqrt{2}}+cosx. 1/{\sqrt{2}})`

    `=sinx+cosx` $\quad (1)$

    $\\$

    `\qquad \sqrt{2}cos(x-π/4)`

    `=\sqrt{2}. (cosxcos\ π/ 4 +sinx sin\ π/4`

    `=\sqrt{2}.(cosx. 1/{\sqrt{2}}+sinx. 1/{\sqrt{2}})`
    `=cosx+sinx`
    `=sinx+cosx` $\quad (2)$

    $\\$

    Từ `(1);(2)` suy ra:

    `\qquad sinx+cosx`

    `=\sqrt{2}. sin(x+π/4)`

    `=\sqrt{2}. cos(x-π/4)`

    $\\$

    `b)` `sinx+ √3.cosx=2sin(x+π/ 3)`

    Ta có:

    `VP= 2sin(x+π/3)`

    `=2 . (sinxcos \ π/3+cosx.sin\ π/3)`

    `=2.(sinx. 1/ 2 +cosx . \sqrt{3}/2)`

    `=sinx+\sqrt{3}cosx=VT`

    Vậy `sinx+\sqrt{3}cosx=2sin(x+π/3)`

    Bình luận

Viết một bình luận