Chứng minh rằng $\frac{cos^{2}x-sin^{2}x}{cot^{2}x-tan^{2}x}$ = $\frac{1}{8}$(1-cos4x) 13/10/2021 Bởi Adeline Chứng minh rằng $\frac{cos^{2}x-sin^{2}x}{cot^{2}x-tan^{2}x}$ = $\frac{1}{8}$(1-cos4x)
Ta có $VT = \dfrac{\cos^2x – \sin^2x}{cot^2x – \tan^2x}$ $= \dfrac{\sin^2 x \cos^2 x(\cos^2x – \sin^2x)}{\cos^4x – \sin^4x}$ $= \dfrac{\sin^2x \cos^2x (\cos^2x – \sin^2x)}{(\cos^2x – \sin^2x)(\cos^2x + sin^2x)}$ $= \sin^2x \cos^2x$ $= \dfrac{1}{4} \sin^2(2x)$ $= \dfrac{1}{8} [1 – \cos(4x)] = VP$ Bình luận
Ta có
$VT = \dfrac{\cos^2x – \sin^2x}{cot^2x – \tan^2x}$
$= \dfrac{\sin^2 x \cos^2 x(\cos^2x – \sin^2x)}{\cos^4x – \sin^4x}$
$= \dfrac{\sin^2x \cos^2x (\cos^2x – \sin^2x)}{(\cos^2x – \sin^2x)(\cos^2x + sin^2x)}$
$= \sin^2x \cos^2x$
$= \dfrac{1}{4} \sin^2(2x)$
$= \dfrac{1}{8} [1 – \cos(4x)] = VP$