Chứng minh rằng M= 5+5^2+5^3+5^4+….5^9+5^10 chí hết cho 6 02/12/2021 Bởi Skylar Chứng minh rằng M= 5+5^2+5^3+5^4+….5^9+5^10 chí hết cho 6
M = 5 + `5^2` + `5^3` + `5^4` + . . . + `5^9` + `5^10` M = ( 5 + `5^2` ) + ( `5^3` + `5^4` ) + . . . + ( `5^9` + `5^10` ) M = 5 ( 1 + 5 ) + `5^3` ( 1 + 5 ) + . . . + `5^9` ( 1 + 5 ) M = 5 . 6 + `5^3` . 6 + . . . + `5^9` . 6 M = 6 ( 5 + `5^3` + . . . + `5^9` ) Mà 6 chia hết cho 6 `=>` M chia hết cho 6 ( đpcm ). Bình luận
`M=5+5^2+5^3+…+5^9+5^10` `=5(1+5)+5^3.(1+5)+..+5^9.(1+5)` `=5.6+5^3 . 6+…+6.5^9` `=6.(5+5^3+…+5^9) vdots 6` Bình luận
M = 5 + `5^2` + `5^3` + `5^4` + . . . + `5^9` + `5^10`
M = ( 5 + `5^2` ) + ( `5^3` + `5^4` ) + . . . + ( `5^9` + `5^10` )
M = 5 ( 1 + 5 ) + `5^3` ( 1 + 5 ) + . . . + `5^9` ( 1 + 5 )
M = 5 . 6 + `5^3` . 6 + . . . + `5^9` . 6
M = 6 ( 5 + `5^3` + . . . + `5^9` )
Mà 6 chia hết cho 6 `=>` M chia hết cho 6 ( đpcm ).
`M=5+5^2+5^3+…+5^9+5^10`
`=5(1+5)+5^3.(1+5)+..+5^9.(1+5)`
`=5.6+5^3 . 6+…+6.5^9`
`=6.(5+5^3+…+5^9) vdots 6`