Chứng minh rằng $sin^{8}x$ + $cos^{8}x$ = 1 – $4sin^{2}x$.$cos^{2}x$ + 2$sin^{4}x$.$cos^{4}x$

Chứng minh rằng
$sin^{8}x$ + $cos^{8}x$ = 1 – $4sin^{2}x$.$cos^{2}x$ + 2$sin^{4}x$.$cos^{4}x$

0 bình luận về “Chứng minh rằng $sin^{8}x$ + $cos^{8}x$ = 1 – $4sin^{2}x$.$cos^{2}x$ + 2$sin^{4}x$.$cos^{4}x$”

  1. Ta có

    $\sin^8x + \cos^8x = (\sin^4x + \cos^4x)^2 – 2\sin^4x \cos^4x$

    $= [(\sin^2x + \cos^2x)^2 – 2\sin^2 \cos^2 ]^2 – 2\sin^4x \cos^4x$

    $= (1 – 2\sin^2x \cos^2x)^2 – 2\sin^4x \cos^4x$

    $= 1 + 4\sin^4x \cos^4x – 4\sin^2x \cos^2x – 2\sin^4x \cos^4x$

    $= 1 + 2\sin^4x \cos^4x – 4\sin^2x \cos^2x= VP$

    Bình luận

Viết một bình luận