Chứng minh rằng: ( sin³ x . sin³ x ) + ( cos³ x . cos³ x ) = 1 – 3sin² x . cos² x

Chứng minh rằng:
( sin³ x . sin³ x ) + ( cos³ x . cos³ x ) = 1 – 3sin² x . cos² x

0 bình luận về “Chứng minh rằng: ( sin³ x . sin³ x ) + ( cos³ x . cos³ x ) = 1 – 3sin² x . cos² x”

  1. $VT=(\sin^3a.\sin^3a)+(\cos^3a.\cos^3a)$

    $=\cos^6a+\sin^6a$

    $=(\cos^2a)^3+(\sin^2a)^3$

    $=(\cos^2a+\sin^2a)(\cos^4a-\cos^2a.\sin^2a+\sin^4a)$

    $= \cos^4a+\sin^4a-\sin^2a\cos^2a$

    $= (\cos^2a+\sin^2a)^2-2\sin^2a\cos^2a-\sin^2a\cos^2a$

    $= 1-3\sin^2a\cos^2a$

    $= VP$

    Bình luận
  2. Ta xét

    $VT = (\sin^3x . \sin^3x) + (\cos^3x . \cos^3x)$

    $= \sin^6x + \cos^6x$

    $= (\sin^2x)^3 + (\cos^2x)^3$

    $= (\sin^2x + \cos^2x)(\sin^4x + \cos^4x – \sin^2x \cos^2x)$

    $= \sin^4x + \cos^4x – \sin^2x \cos^2x$

    $= (\sin^2x)^2 + (\cos^2x)^2 + 2\sin^2x \cos^2x – 2\sin^2x \cos^2x – \sin^2x \cos^2x$

    $= (\sin^2x + \cos^2x)^2 – 3\sin^2x \cos^2x$

    $= 1 – 3\sin^2x \cos^2x = VP$.

    Bình luận

Viết một bình luận