Chung minh sin mu 3 alpha=3sin alpha-4sin mu 3 alpha Cos mu 3 alpha=4 cos mu 3 alpha-3cos alpha 10/10/2021 Bởi Mackenzie Chung minh sin mu 3 alpha=3sin alpha-4sin mu 3 alpha Cos mu 3 alpha=4 cos mu 3 alpha-3cos alpha
Giải thích các bước giải: Ta có: \(\begin{array}{l}*)\\\sin 3\alpha = \sin \left( {\alpha + 2\alpha } \right)\\ = \sin \alpha .\cos 2\alpha + \sin 2\alpha .\cos \alpha \\ = \sin \alpha .\left( {1 – 2{{\sin }^2}\alpha } \right) + 2\sin \alpha .\cos \alpha .\cos \alpha \\ = \sin \alpha .\left( {1 – 2{{\sin }^2}\alpha } \right) + 2\sin \alpha .co{s^2}\alpha \\ = \sin \alpha – 2{\sin ^3}\alpha + 2\sin \alpha \left( {1 – {{\sin }^2}\alpha } \right)\\ = \sin \alpha – 2{\sin ^3}\alpha + 2\sin \alpha – 2si{n^3}\alpha \\ = 3\sin \alpha – 4{\sin ^3}\alpha \\*)\\\cos 3\alpha = \cos \left( {2\alpha + \alpha } \right)\\ = \cos 2\alpha .\cos \alpha – \sin \alpha .\sin 2\alpha \\ = \left( {2{{\cos }^2}\alpha – 1} \right).\cos \alpha – \sin \alpha .2\sin \alpha .cos\alpha \\ = 2co{s^3}\alpha – \cos \alpha – 2\cos \alpha .{\sin ^2}\alpha \\ = 2{\cos ^3}\alpha – \cos \alpha – 2\cos \alpha .\left( {1 – {{\cos }^2}\alpha } \right)\\ = 2{\cos ^3}\alpha – \cos \alpha – 2\cos \alpha + 2{\cos ^3}\alpha \\ = 4{\cos ^4}\alpha – 3\cos \alpha \end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
*)\\
\sin 3\alpha = \sin \left( {\alpha + 2\alpha } \right)\\
= \sin \alpha .\cos 2\alpha + \sin 2\alpha .\cos \alpha \\
= \sin \alpha .\left( {1 – 2{{\sin }^2}\alpha } \right) + 2\sin \alpha .\cos \alpha .\cos \alpha \\
= \sin \alpha .\left( {1 – 2{{\sin }^2}\alpha } \right) + 2\sin \alpha .co{s^2}\alpha \\
= \sin \alpha – 2{\sin ^3}\alpha + 2\sin \alpha \left( {1 – {{\sin }^2}\alpha } \right)\\
= \sin \alpha – 2{\sin ^3}\alpha + 2\sin \alpha – 2si{n^3}\alpha \\
= 3\sin \alpha – 4{\sin ^3}\alpha \\
*)\\
\cos 3\alpha = \cos \left( {2\alpha + \alpha } \right)\\
= \cos 2\alpha .\cos \alpha – \sin \alpha .\sin 2\alpha \\
= \left( {2{{\cos }^2}\alpha – 1} \right).\cos \alpha – \sin \alpha .2\sin \alpha .cos\alpha \\
= 2co{s^3}\alpha – \cos \alpha – 2\cos \alpha .{\sin ^2}\alpha \\
= 2{\cos ^3}\alpha – \cos \alpha – 2\cos \alpha .\left( {1 – {{\cos }^2}\alpha } \right)\\
= 2{\cos ^3}\alpha – \cos \alpha – 2\cos \alpha + 2{\cos ^3}\alpha \\
= 4{\cos ^4}\alpha – 3\cos \alpha
\end{array}\)