Chứng minh với mọi n € N* E = (1+1/1×3)(1+1/2×4)…(1+1/1n(n+2))<2 02/10/2021 Bởi Arianna Chứng minh với mọi n € N* E = (1+1/1×3)(1+1/2×4)…(1+1/1n(n+2))<2
`E=[(1+1/1.3)(1+1/2.4)…(1+1/{n(n+2)}]` `⇒E={1.3+1}/1.3.{2.4+1}/2.4…{n(n+2)+1}/{n(n+2)}` `⇒E=2^2/1.3 . 3^2/2.4…{(n+1)^2}/{n(n+2)}` `⇒E={2.2.3.3…(n+1).(n+1)}/{1.3.2.4…n.(n+2)}` `⇒E={2.(n+1)}/{1.(n+2)}` `⇒E={2n+2}/{n+2}<2` `⇒E<2` `(đpcm)` Bình luận
`E=[(1+1/1.3)(1+1/2.4)…(1+1/{n(n+2)}]`
`⇒E={1.3+1}/1.3.{2.4+1}/2.4…{n(n+2)+1}/{n(n+2)}`
`⇒E=2^2/1.3 . 3^2/2.4…{(n+1)^2}/{n(n+2)}`
`⇒E={2.2.3.3…(n+1).(n+1)}/{1.3.2.4…n.(n+2)}`
`⇒E={2.(n+1)}/{1.(n+2)}`
`⇒E={2n+2}/{n+2}<2`
`⇒E<2` `(đpcm)`