chứng tỏ
a. (a-b+c) – (a+c) = -b
b. – (a+b-c) + (a-b-c ) =-2b
c. (a+b)-(b-a)+c=2a+c
d. a(b+c)-a(b+d)=a(c-d)
e. a(b-c) +a(d+c) =a(b+d)
chứng tỏ
a. (a-b+c) – (a+c) = -b
b. – (a+b-c) + (a-b-c ) =-2b
c. (a+b)-(b-a)+c=2a+c
d. a(b+c)-a(b+d)=a(c-d)
e. a(b-c) +a(d+c) =a(b+d)
1) (a – b + c) – (a + c)
= a – b + c – a – c
= -b
=> (a-b+c) – (a+c) = -b
2) – (a+b-c) + (a-b-c )
= -a – b + c + a – b – c
= -2b
=> – (a+b-c) + (a-b-c ) =-2b
3) (a+b)-(b-a)+c
= a + b – b + a + c
= 2a + c
=> (a+b)-(b-a)+c=2a+c
4) a(b+c)-a(b+d)
= ab + ac – ab – ad
= ac – ad
= a. (c – d)
=> a(b+c)-a(b+d)=a(c-d)
5) a(b-c) +a(d+c)
= ab – ac + ad + ac
= ab + ad
= a. (b + d)
=>a(b-c) +a(d+c) =a(b+d)
Đáp án:
Giải thích các bước giải:
`a) (a-b+c)-(a+c)=a-b+c-a-c`
`=(a-a)+(c-c)+(-b)=-b`
`b)-(a+b-c)+(a-b-c)=-a-b+c+a-b-c`
`=(-a+a)+(c-c)+(-b-b)=-2b`
`c)(a+b)-(b-a)+c=a+b-b+a+c`
`=(a+a)(b-b)+c=2a+c`
`d)a(b+c)-a(b+d)=ab+ac-ab-ad`
`=ac-ad=a(c-d)`
`e)a(b-c)+a(d+c)=ab-ac+ad+ac`
`=ab-ad=a(b-d)`
XIN HAY NHẤT NHÉ