Chứng tỏ: (a – b – c) – (a + b – c) + (b – c – a) – (c – a – b) + 5 = –2c + 5 06/07/2021 Bởi Lydia Chứng tỏ: (a – b – c) – (a + b – c) + (b – c – a) – (c – a – b) + 5 = –2c + 5
VT = a – b – c – a – b + c + b – c – a – c + a + b + 5 = (a -a -a +a) + ( -b -b +b +b) + (-c +c -c -c ) + 5 = -2c +5 Bình luận
Ta có: VT = (a – b – c) – (a + b – c) + (b – c – a) – (c – a – b) + 5 = a – b – c – a – b + c + b – c – a – c + a + b + 5 = (a – a – a + a) – (b + b – b – b) – (c – c + c + c) + 5 = 0 – 0 – 2c + 5 = 0 – 2c + 5 = -2c + 5 = VP (đpcm) VT: vế trái VP: vế phải Bình luận
VT = a – b – c – a – b + c + b – c – a – c + a + b + 5
= (a -a -a +a) + ( -b -b +b +b) + (-c +c -c -c ) + 5
= -2c +5
Ta có:
VT = (a – b – c) – (a + b – c) + (b – c – a) – (c – a – b) + 5
= a – b – c – a – b + c + b – c – a – c + a + b + 5
= (a – a – a + a) – (b + b – b – b) – (c – c + c + c) + 5
= 0 – 0 – 2c + 5
= 0 – 2c + 5
= -2c + 5 = VP (đpcm)
VT: vế trái
VP: vế phải