Chứng tỏ a/D = 1/101 + 1/102 + 1/103 + … +1/200 > 1/2 b/N = 1/2^2 + 1/3^2 + 1/4^2 + … + 1/100^2 < 1

Chứng tỏ
a/D = 1/101 + 1/102 + 1/103 + … +1/200 > 1/2
b/N = 1/2^2 + 1/3^2 + 1/4^2 + … + 1/100^2 < 1

0 bình luận về “Chứng tỏ a/D = 1/101 + 1/102 + 1/103 + … +1/200 > 1/2 b/N = 1/2^2 + 1/3^2 + 1/4^2 + … + 1/100^2 < 1”

  1. $D=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+…+\dfrac{1}{200}$

    Vì $\dfrac{1}{101};\dfrac{1}{102};…;\dfrac{1}{199}>\dfrac{1}{200}$

    $D>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+…+\dfrac{1}{200}$

    $D>\dfrac{1}{200}.100$

    $D>\dfrac{100}{200}=\dfrac{1}{2}$

    $D>\dfrac{1}{2}$ $(đpcm)$

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    $a)$ $D=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+…+\dfrac{1}{200}$

    Ta có:

    $\dfrac{1}{101}$>$\dfrac{1}{200}$

    $ $

    $\dfrac{1}{102}$>$\dfrac{1}{200}$

    $\vdots$ 

    $\dfrac{1}{200}$=$\dfrac{1}{200}$

    $ $

    $⇒\dfrac{1}{101}+\dfrac{1}{102}+…+\dfrac{1}{200}$>$\dfrac{1}{200}+…+\dfrac{1}{200}$

    $ $

    $⇒\dfrac{1}{101}+\dfrac{1}{102}+…+\dfrac{1}{200}$>$\dfrac{100}{200}$

    $ $

    $⇒\dfrac{1}{101}+\dfrac{1}{102}+…+\dfrac{1}{200}$>$\dfrac{1}{2}$  (đpcm)

    $ $

    $ $

    $ $

    $b)$ $N=\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+…+\dfrac{1}{100^{2}}$

    Ta có:

    $\dfrac{1}{2^{2}}$<$\dfrac{1}{1.2}$

    $ $

    $\dfrac{1}{3^{2}}$<$\dfrac{1}{2.3}$

    $\vdots$ 

    $\dfrac{1}{100^{2}}$<$\dfrac{1}{99.100}$

    $ $ 

    $⇒\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+…+\dfrac{1}{100^{2}}$<$\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+…+\dfrac{1}{99.100}$

    $ $

    $⇒\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+…+\dfrac{1}{100^{2}}$<$1-\dfrac{1}{100}$

    $ $

    $⇒\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+…+\dfrac{1}{100^{2}}$<$\dfrac{99}{100}$

    $ $

    Mà $\dfrac{99}{100}$<$1$

    $ $

    $⇒\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+…+\dfrac{1}{100^{2}}$<$1$   (đpcm)

    Bình luận

Viết một bình luận