Chứng tỏ $\frac{1}{3}$ + $\frac{2}{3^{2}}$ + $\frac{3}{3^{3}}$ + ….. + $\frac{2019}{3^{2019}}$ < $0,75$

Chứng tỏ $\frac{1}{3}$ + $\frac{2}{3^{2}}$ + $\frac{3}{3^{3}}$ + ….. + $\frac{2019}{3^{2019}}$ < $0,75$

0 bình luận về “Chứng tỏ $\frac{1}{3}$ + $\frac{2}{3^{2}}$ + $\frac{3}{3^{3}}$ + ….. + $\frac{2019}{3^{2019}}$ < $0,75$”

  1. @hieu

    Đặt : A = 1/3 +1/3² + …. + 2019/ $3^{2018}$ 

    => 3A =  1 + 2/3 +……+ 2019/$3^{2018}$ 

     =>2A = 1 + 1/3 +……+ 1/$3^{2018}$ – 2019/$3^{2019}$ 

    =>6A = 3+1 + 1/3 +1/3² +……+ 1/$3^{2019}$  – 2019/$3^{2018}$ 

    => 4A = 3- 2020 / $3^{2018}$ + 2019/$3^{2019}$ 

    =>A = 3/4 – 4041/$3^{2019}$ ×4 < 3/4 = 0,75 

    Xin hay nhất ạ !!

    Bình luận
  2. Đặt :` B = 1/3 + 2/3^2 + 3/3^3 + …. + 2019/3^2019`

    `⇒ 3B = 1 + 2/3 + …. + 2019/3^2018`

    `⇒ 3B – B = ( 1 + 2/3 + … + 2019/3^2018 ) – ( 1/3 + 2/3^2 + …. + 2019/3^2019 )`

    `⇒ 2B = 1 + 1/3 + …. + 1/3^2018 – 2019/3^2019`

    `⇒ 6B = 3 + 1 + 1/3 + …. + 1/3^2019 – 2019/3^2018`

    `⇒ 6B – 2B = ( 3 + 1 + 1/3 + … + 1/3^2019 – 2019/3^2018 ) – ( 1 + 1/3 + … + 1/3^2018 – 2019/3^2019 )`

    `⇒ 4B = 3 – 2020/3^2018 + 2019/3^2019` 

    `⇒ B = 3/4 – 4041/3^2019 < 3/4`

    `⇒ B < 3/4` ( Điều phải chứng minh )

    Bình luận

Viết một bình luận