Chứng tỏ rằng (1-1/3).(1-1/6).(1-1/10).(1-1/15).(1-1/253)<2/5

Chứng tỏ rằng (1-1/3).(1-1/6).(1-1/10).(1-1/15).(1-1/253)<2/5

0 bình luận về “Chứng tỏ rằng (1-1/3).(1-1/6).(1-1/10).(1-1/15).(1-1/253)<2/5”

  1. Đáp án:

    `(1 – 1/3) (1 – 1/6) (1 – 1/10) (1 – 1/15) … (1 – 1/253)`

    `= 2/3 × 5/6 × 9/10 × 14/15 × … × 252/253`

    `= (2 × 2)/(3 × 2) × (5 × 2)/(6 × 2) × (9 × 2)/(10 × 2) × (14 × 2)/(15 × 2) × … × (252 × 2)/(253 × 2)`

    `= 4/6 × 10/12 × 18/20 × 28/30 × … × 504/506`

    `= (4 × 10 × 18 × 28 × … × 504)/(6 × 12 × 20 × 30 × … × 506)`

    `= (1 × 2×3×…×21)/(2×3×4…×22) × (4 ×5×6×…×24)/(3×4×5×…×23)`

    `= 1/22 × 24/3`

    `= 24/66`

    `= 4/11`

    `text{Ta thấy :}` `4/11 < 2/5`

    `-> (1 – 1/3) (1 – 1/6) (1 – 1/10) (1 – 1/15) … (1 – 1/253) < 2/5`

     

    Bình luận
  2. Đáp án:

    Đặt `A=(1-1/3).(1-1/6).(1-1/10).(1-1/15)….(1-1/253)` 

    `= 2/3 . 5/6 . 9/10 . 14/15 …. 252/253`

    `= 4/6 . 10/12 . 18/20 . 28/30 … 504/506`

    `= (4.10.18.28…504)/(6.12.20.30…506)`

    `= (1.4.2.5.3.6.4.7…21.24)/(2.3.3.4.4.5.5.6…22.23)`

    `= (1.2.3…21)/(2.3.4…22) . (4.5.6….24)/(3.4.5….23)`

    `= 1/22 . 24/3 = 4/11 < 22/55 = 2/5`

    Vậy `A<2/5`

    Bình luận

Viết một bình luận