chứng tỏ rằng 200-(3+2/3+2/4+2/5+…+2/100)/ 1/2+2/3+3/4+…+99/100=2 06/10/2021 Bởi Abigail chứng tỏ rằng 200-(3+2/3+2/4+2/5+…+2/100)/ 1/2+2/3+3/4+…+99/100=2
Em tham khảo nhé: $\text{Xét 200-(3+$\dfrac{2}{3}$+$\dfrac{2}{4}$+….+$\dfrac{2}{100}$)}$ $\text{=200-2-(1+$\dfrac{2}{3}$+…+$\dfrac{2}{100}$)}$ $\text{=198-(1+$\dfrac{2}{3}$+…+$\dfrac{2}{100}$)}$ $\text{=2[99-($\dfrac{1}{2}$- $\dfrac{1}{3}$+….+ $\dfrac{1}{100}$ ) (1)}$ $\text{Xét $\dfrac{1}{2}$+$\dfrac{2}{3}$+..+ $\dfrac{99}{100}$}$ $\text{⇒Rút 1 ra (Có 99 số)}$ $\text{⇒99-( $\dfrac{1}{2}$+ $\dfrac{1}{3}$+..+$\dfrac{1}{100}$) (2)}$ $\text{Từ 1,2⇒A=2}$ Bình luận
Ta có: $\dfrac{200-\bigg(3+\dfrac{2}{3}+…+\dfrac{2}{100}\bigg)}{\dfrac{1}{2}+\dfrac{2}{3}+…+\dfrac{99}{100}}$ $=\dfrac{200-2-\bigg(\dfrac{2}{2}+\dfrac{2}{3}+…+\dfrac{2}{100}\bigg)}{1-\dfrac{1}{2}+1-\dfrac{2}{3}+…+1-\dfrac{1}{100}}$ $=\dfrac{198-\bigg(\dfrac{2}{2}+\dfrac{2}{3}+…+\dfrac{2}{100}\bigg)}{\bigg(1+1+…+1)-(\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{100}\bigg)}$ $=\dfrac{2.\bigg[99-\bigg(\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{100}\bigg)\bigg]}{99-\bigg(\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{100}\bigg)}$ $=2$ Vậy… (đpcm) Bình luận
Em tham khảo nhé:
$\text{Xét 200-(3+$\dfrac{2}{3}$+$\dfrac{2}{4}$+….+$\dfrac{2}{100}$)}$
$\text{=200-2-(1+$\dfrac{2}{3}$+…+$\dfrac{2}{100}$)}$
$\text{=198-(1+$\dfrac{2}{3}$+…+$\dfrac{2}{100}$)}$
$\text{=2[99-($\dfrac{1}{2}$- $\dfrac{1}{3}$+….+ $\dfrac{1}{100}$ ) (1)}$
$\text{Xét $\dfrac{1}{2}$+$\dfrac{2}{3}$+..+ $\dfrac{99}{100}$}$
$\text{⇒Rút 1 ra (Có 99 số)}$
$\text{⇒99-( $\dfrac{1}{2}$+ $\dfrac{1}{3}$+..+$\dfrac{1}{100}$) (2)}$
$\text{Từ 1,2⇒A=2}$
Ta có:
$\dfrac{200-\bigg(3+\dfrac{2}{3}+…+\dfrac{2}{100}\bigg)}{\dfrac{1}{2}+\dfrac{2}{3}+…+\dfrac{99}{100}}$
$=\dfrac{200-2-\bigg(\dfrac{2}{2}+\dfrac{2}{3}+…+\dfrac{2}{100}\bigg)}{1-\dfrac{1}{2}+1-\dfrac{2}{3}+…+1-\dfrac{1}{100}}$
$=\dfrac{198-\bigg(\dfrac{2}{2}+\dfrac{2}{3}+…+\dfrac{2}{100}\bigg)}{\bigg(1+1+…+1)-(\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{100}\bigg)}$
$=\dfrac{2.\bigg[99-\bigg(\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{100}\bigg)\bigg]}{99-\bigg(\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{100}\bigg)}$
$=2$
Vậy… (đpcm)