chứng tỏ rằng 200-(3+2/3+2/4+2/5+…+2/100)/ 1/2+2/3+3/4+…+99/100=2

chứng tỏ rằng 200-(3+2/3+2/4+2/5+…+2/100)/ 1/2+2/3+3/4+…+99/100=2

0 bình luận về “chứng tỏ rằng 200-(3+2/3+2/4+2/5+…+2/100)/ 1/2+2/3+3/4+…+99/100=2”

  1. Em tham khảo nhé:

    $\text{Xét 200-(3+$\dfrac{2}{3}$+$\dfrac{2}{4}$+….+$\dfrac{2}{100}$)}$

    $\text{=200-2-(1+$\dfrac{2}{3}$+…+$\dfrac{2}{100}$)}$

    $\text{=198-(1+$\dfrac{2}{3}$+…+$\dfrac{2}{100}$)}$

    $\text{=2[99-($\dfrac{1}{2}$- $\dfrac{1}{3}$+….+ $\dfrac{1}{100}$ ) (1)}$

    $\text{Xét $\dfrac{1}{2}$+$\dfrac{2}{3}$+..+ $\dfrac{99}{100}$}$

    $\text{⇒Rút 1 ra (Có 99 số)}$

    $\text{⇒99-(  $\dfrac{1}{2}$+ $\dfrac{1}{3}$+..+$\dfrac{1}{100}$) (2)}$

    $\text{Từ 1,2⇒A=2}$

     

    Bình luận
  2. Ta có:

        $\dfrac{200-\bigg(3+\dfrac{2}{3}+…+\dfrac{2}{100}\bigg)}{\dfrac{1}{2}+\dfrac{2}{3}+…+\dfrac{99}{100}}$

    $=\dfrac{200-2-\bigg(\dfrac{2}{2}+\dfrac{2}{3}+…+\dfrac{2}{100}\bigg)}{1-\dfrac{1}{2}+1-\dfrac{2}{3}+…+1-\dfrac{1}{100}}$

    $=\dfrac{198-\bigg(\dfrac{2}{2}+\dfrac{2}{3}+…+\dfrac{2}{100}\bigg)}{\bigg(1+1+…+1)-(\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{100}\bigg)}$

    $=\dfrac{2.\bigg[99-\bigg(\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{100}\bigg)\bigg]}{99-\bigg(\dfrac{1}{2}+\dfrac{1}{3}+…+\dfrac{1}{100}\bigg)}$

    $=2$

    Vậy… (đpcm)

    Bình luận

Viết một bình luận