chứng tỏ rằng: A=-2^1-2^2-2^3-…-2^99-2^100 -2^1 là âm hai mũ 1 nhé 22/10/2021 Bởi Melody chứng tỏ rằng: A=-2^1-2^2-2^3-…-2^99-2^100 -2^1 là âm hai mũ 1 nhé
`A=-2^1-2^2-2^3-…-2^99-2^100` `A=-(2^1+2^2+2^3+…+2^100)` `2A=-(2^2+2^3+2^4+…+2^101)` `2A-A=-(2^2+2^3+2^4+…+2^101)-[-(2^1+2^2+2^3+…+2^100)]` `A=-2^2-2^3-2^4-…-2^99-2^100-2^101+2^1+2^2+2^3+…+2^100` `A=-2^101+2^1` `A=2-2^101` `⇒A ∈ Z` Bình luận
`A=-2^1-2^2-2^3-…-2^99-2^100`
`A=-(2^1+2^2+2^3+…+2^100)`
`2A=-(2^2+2^3+2^4+…+2^101)`
`2A-A=-(2^2+2^3+2^4+…+2^101)-[-(2^1+2^2+2^3+…+2^100)]`
`A=-2^2-2^3-2^4-…-2^99-2^100-2^101+2^1+2^2+2^3+…+2^100`
`A=-2^101+2^1`
`A=2-2^101`
`⇒A ∈ Z`