Chứng tỏ rằng: A = 2 +2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11+2^12 chia hết cho 7.

Chứng tỏ rằng: A = 2 +2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11+2^12 chia hết cho 7.

0 bình luận về “Chứng tỏ rằng: A = 2 +2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11+2^12 chia hết cho 7.”

  1. `A = 2 +2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^(10)+2^(11)+2^(12)`

    `=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+(2^(10)+2^(11)+2^(12))`

    `=2.(1+2+2^2)+2^4.(1+2+2^2)+2^7.(1+2+2^2)+2^(10).(1+2+2^2)`

    `= 2.7+2^4 .7+2^7 .7+2^(10).7`

    `=7.(2+2^4+2^7+2^(10))\vdots7`

    `=>A\vdots7`

    Bình luận

Viết một bình luận