Chứng tỏ rằng: A = 2 +2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11+2^12 chia hết cho 7. 01/08/2021 Bởi Eloise Chứng tỏ rằng: A = 2 +2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11+2^12 chia hết cho 7.
`A = 2 +2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^(10)+2^(11)+2^(12)` `=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+(2^(10)+2^(11)+2^(12))` `=2.(1+2+2^2)+2^4.(1+2+2^2)+2^7.(1+2+2^2)+2^(10).(1+2+2^2)` `= 2.7+2^4 .7+2^7 .7+2^(10).7` `=7.(2+2^4+2^7+2^(10))\vdots7` `=>A\vdots7` Bình luận
`A = 2 +2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^(10)+2^(11)+2^(12)`
`=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+(2^(10)+2^(11)+2^(12))`
`=2.(1+2+2^2)+2^4.(1+2+2^2)+2^7.(1+2+2^2)+2^(10).(1+2+2^2)`
`= 2.7+2^4 .7+2^7 .7+2^(10).7`
`=7.(2+2^4+2^7+2^(10))\vdots7`
`=>A\vdots7`