Chứng tỏ rằng: a, \dfrac{1}{2} – \dfrac{1}{4} + \dfrac{1}{8} – \dfrac{1}{16} + \dfrac{1}{32} – \dfrac{1}{64} < \dfrac{1}{3} b, \dfrac{1}{41} + \dfrac

Chứng tỏ rằng:
a, \dfrac{1}{2} – \dfrac{1}{4} + \dfrac{1}{8} – \dfrac{1}{16} + \dfrac{1}{32} – \dfrac{1}{64} < \dfrac{1}{3} b, \dfrac{1}{41} + \dfrac{1}{42} + \dfrac{1}{43} + ... + \dfrac{1}{79} + \dfrac{1}{80} > \dfrac{7}{12}

0 bình luận về “Chứng tỏ rằng: a, \dfrac{1}{2} – \dfrac{1}{4} + \dfrac{1}{8} – \dfrac{1}{16} + \dfrac{1}{32} – \dfrac{1}{64} < \dfrac{1}{3} b, \dfrac{1}{41} + \dfrac”

  1. b) Đặt A= $\frac{1}{2}$- $\frac{1}{4}$+ $\frac{1}{8}$- $\frac{1}{16}$+ $\frac{1}{32}$- $\frac{1}{64}$

    2A= 1- $\frac{1}{2}$+ $\frac{1}{4}$- $\frac{1}{8}$+ $\frac{1}{16}$- $\frac{1}{32}$

    2A- A= 1- $\frac{1}{64}$

    A= $\frac{63}{64}$

    Vì $\frac{63}{64}$< $\frac{1}{3}$

    nên $\frac{1}{2}$- $\frac{1}{4}$+ $\frac{1}{8}$- $\frac{1}{16}$+ $\frac{1}{32}$- $\frac{1}{64}$< $\frac{1}{3}$

    Vậy $\frac{1}{2}$- $\frac{1}{4}$+ $\frac{1}{8}$- $\frac{1}{16}$+ $\frac{1}{32}$- $\frac{1}{64}$< $\frac{1}{3}$

    b)

    $\frac{7}{12}$= $\frac{4}{12}$+ $\frac{3}{12}$= $\frac{20}{60}$+ $\frac{20}{80}$

    = ( $\frac{1}{41}$+$\frac{1}{42}$+ $\frac{1}{43}$+…+ $\frac{1}{60}$)+ ($\frac{1}{61}$+ $\frac{1}{62}$+…+ $\frac{1}{79}$+ + $\frac{1}{80}$

    Vì $\frac{1}{41}$+$\frac{1}{42}$+ $\frac{1}{43}$> …> $\frac{1}{59}$+$\frac{1}{60}$

    ⇒ $\frac{1}{41}$+$\frac{1}{42}$+ $\frac{1}{43}$+…+$\frac{1}{60}$)> $\frac{1}{60}$+…+ $\frac{1}{60}$= $\frac{20}{60}$

    và $\frac{1}{61}$>$\frac{1}{62}$…>  $\frac{1}{79}$> $\frac{1}{80}$

    ⇒ ($\frac{1}{61}$+ $\frac{1}{62}$+…+ $\frac{1}{79}$+ + $\frac{1}{80}$)> $\frac{1}{80}$>… $\frac{1}{80}$= $\frac{20}{80}$

    Vậy $\frac{1}{41}$+$\frac{1}{42}$+ $\frac{1}{43}$+…+$\frac{1}{79}$+ + $\frac{1}{80}$> $\frac{20}{60}$+ $\frac{20}{80}$= $\frac{7}{12}$

    ⇒ $\frac{1}{41}$+$\frac{1}{42}$+ $\frac{1}{43}$+…+ $\frac{1}{79}$+ $\frac{1}{80}$> 7/12

    CHO MIK CTLHN NHA

    Bình luận

Viết một bình luận