Cm đa thức sau không có nghiệm A(x)=x^2+x+1 ( giải chi tiết cho mik nhé) 11/08/2021 Bởi Melody Cm đa thức sau không có nghiệm A(x)=x^2+x+1 ( giải chi tiết cho mik nhé)
Tham khảo Xét `x^2+x+1` `=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}` `=x(x+\frac{1}{2})+\frac{1}{2}(x+\frac{1}{2})+\frac{3}{4}` `=(x+\frac{1}{2})(x+\frac{1}{2})+\frac{3}{4}` `=(x+\frac{1}{2})^2+\frac{3}{4}>0` Do đó `A(x) \ne 0` nên không có nghiệm `\text{©CBT}` Bình luận
Đáp án: Vậy nên đa thức sau không có nghiệm Giải thích các bước giải: Ta có A(x)=`x^2`+x+1=`x^2`+2x`1/2`+`1/4`+`3/4` Do `x^2`+2x`1/2`+`1/4`=`(x+`1/2`)^2`≥0 =>A(x)=`(x+`1/2`)^2`+`3/4`≥`3/4` Để A(x) có nghiệm thì A(x)=0 mà A(x)≥`3/4 Vậy nên đa thức sau không có nghiệm Bình luận
Tham khảo
Xét `x^2+x+1`
`=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}`
`=x(x+\frac{1}{2})+\frac{1}{2}(x+\frac{1}{2})+\frac{3}{4}`
`=(x+\frac{1}{2})(x+\frac{1}{2})+\frac{3}{4}`
`=(x+\frac{1}{2})^2+\frac{3}{4}>0`
Do đó `A(x) \ne 0` nên không có nghiệm
`\text{©CBT}`
Đáp án:
Vậy nên đa thức sau không có nghiệm
Giải thích các bước giải:
Ta có A(x)=`x^2`+x+1=`x^2`+2x`1/2`+`1/4`+`3/4`
Do `x^2`+2x`1/2`+`1/4`=`(x+`1/2`)^2`≥0
=>A(x)=`(x+`1/2`)^2`+`3/4`≥`3/4`
Để A(x) có nghiệm thì A(x)=0 mà A(x)≥`3/4
Vậy nên đa thức sau không có nghiệm