cm Vecto: AD+BE+CF=AE+BF+CD=AF+BD+CE
giải hộ em chứ em sắp nộp r ạ
0 bình luận về “cm Vecto: AD+BE+CF=AE+BF+CD=AF+BD+CE
giải hộ em chứ em sắp nộp r ạ”
Đáp án:
Vecto mình ghi chung ở đầu mỗi dòng, khi viết bạn nhỡ ghi vecto nhé! Sợ ghi nhiều vecto rối. Với cả mình không quen dùng telex
Giải thích các bước giải:
B1: Chứng minh vecto AD+BE+CF=AE+BF+CD
VT = vecto AD+BE+CF = vecto AE + ED + BF + FE + CD + DF = (vecto AE + BF + CD) + (vecto ED + DF + FE) = (vecto AE + BF + CD) + vecto EF + FE = vecto AE + BF + CD = VP (dpcm) (1)
B2: Chứng minh vecto AE+BF+CD=AF+BD+CE
VT = vecto AE+BF+CD = vecto AF + FE + BD + DF + CE + ED = (vecto AF + BD + CE) + (vecto FE + ED + DF) = (vecto AF + BD + CE) + vecto ED + DF = vecto AF + BD + CE = VP (dpcm) (2)
Đáp án:
Vecto mình ghi chung ở đầu mỗi dòng, khi viết bạn nhỡ ghi vecto nhé! Sợ ghi nhiều vecto rối. Với cả mình không quen dùng telex
Giải thích các bước giải:
B1: Chứng minh vecto AD+BE+CF=AE+BF+CD
VT = vecto AD+BE+CF
= vecto AE + ED + BF + FE + CD + DF
= (vecto AE + BF + CD) + (vecto ED + DF + FE)
= (vecto AE + BF + CD) + vecto EF + FE
= vecto AE + BF + CD = VP (dpcm) (1)
B2: Chứng minh vecto AE+BF+CD=AF+BD+CE
VT = vecto AE+BF+CD
= vecto AF + FE + BD + DF + CE + ED
= (vecto AF + BD + CE) + (vecto FE + ED + DF)
= (vecto AF + BD + CE) + vecto ED + DF
= vecto AF + BD + CE = VP (dpcm) (2)
Từ (1), (2) => vecto AD+BE+CF=AE+BF+CD=AF+BD+CE
`\vec {AD} + \vec {BE}+ \vec {CF} = \vec {AE}+\vec {BF}+\vec {CD}`
`\Leftrightarrow (\vec {AD}- \vec {AE})+(\vec {BE}-\vec {BF})+ (\vec {CF}-\vec {CD}) = \vec 0`
`\Leftrightarrow \vec {ED} + \vec {FE} + \vec {DF} = \vec 0 \Leftrightarrow \vec {ED} + \vec {DE} = \vec 0 \Rightarrow Đpcm`