CMR: 1+ $\frac{1}{2^2}$+ $\frac{1}{3^2}$ + $\frac{1}{4^2}$ +…+ $\frac{1}{100^2}$ <2

CMR: 1+ $\frac{1}{2^2}$+ $\frac{1}{3^2}$ + $\frac{1}{4^2}$ +…+ $\frac{1}{100^2}$ <2

0 bình luận về “CMR: 1+ $\frac{1}{2^2}$+ $\frac{1}{3^2}$ + $\frac{1}{4^2}$ +…+ $\frac{1}{100^2}$ <2”

  1. Đáp án:

    $\frac{1}{2^2}<\frac{1}{1.2}\\
    \frac{1}{3^2}<\frac{1}{2.3}\\
    \Rightarrow 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+…+\frac{1}{10^2}\\
    <1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+…+\frac{1}{9.100}\\
    =1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+…+\frac{1}{99}-\frac{1}{100}\\
    =2-\frac{1}{100}\\
    =\frac{199}{100}\\
    <\frac{200}{100}=2$

    Bình luận

Viết một bình luận