CMR: 3.($\frac{1}{ab}$ + $\frac{1}{bc}$ + $\frac{1}{ac}$ )$\geq$ 4.($\frac{1}{a+b}$ + $\frac{1}{b+c}$ + $\frac{1}{a+c}$ )$^{2}$
CMR: 3.($\frac{1}{ab}$ + $\frac{1}{bc}$ + $\frac{1}{ac}$ )$\geq$ 4.($\frac{1}{a+b}$ + $\frac{1}{b+c}$ + $\frac{1}{a+c}$ )$^{2}$
Đáp án:
Theo bđt Cauchy: $ab\le \frac{{{(a+b)}^{2}}}{4}\to \frac{1}{ab}\ge \frac{4}{{{(a+b)}^{2}}}$
Tương tự: $\frac{1}{bc}\ge \frac{4}{{{(b+c)}^{2}}}$ ; $\frac{1}{ca}\ge \frac{4}{{{(c+a)}^{2}}}$
$\to \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge 4[\frac{1}{{{(a+b)}^{2}}}+\frac{1}{{{(b+c)}^{2}}}+\frac{1}{{{(c+a)}^{2}}}]$
Mặt khác, theo bất đẳng thức Cauchy-Swcharz:
$3[\frac{1}{{{(a+b)}^{2}}}+\frac{1}{{{(b+c)}^{2}}}+\frac{1}{{{(c+a)}^{2}}}]\ge {{(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})}^{2}}$
Từ đó suy ra được:
$3(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})\ge 4.3[\frac{1}{{{(a+b)}^{2}}}+\frac{1}{{{(b+c)}^{2}}}+\frac{1}{{{(c+a)}^{2}}}]\ge 4{{(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})}^{2}}$
đcpm
Dấu “=” xảy ra khi và chỉ khi $a=b=c$