CMR: a^2/b^2 + b^2/c^2 + c^2/a^2 ≥ a/c + c/b + b/a

CMR:
a^2/b^2 + b^2/c^2 + c^2/a^2 ≥ a/c + c/b + b/a

0 bình luận về “CMR: a^2/b^2 + b^2/c^2 + c^2/a^2 ≥ a/c + c/b + b/a”

  1. Đáp án :

    $\left(\dfrac{a}{b} – \dfrac{b}{c}\right)^2 \geq 0 $

    $\Leftrightarrow \dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} – 2\dfrac{a}{b}\cdot\dfrac{b}{c} \geq 0 $

    $\Leftrightarrow \dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} \geq \dfrac{2a}{c} $

    $\dfrac{b^2}{c^2} + \dfrac{c^2}{a^2} \geq \dfrac{2b}{a} $

    $\dfrac{c^2}{a^2} + \dfrac{a^2}{b^2} \geq \dfrac{2c}{b} $

    $2\left(\dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} +\dfrac{c^2}{a^2}\right) \geq 2\left(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a}\right) $

    $\Leftrightarrow \dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} +\dfrac{c^2}{a^2}\geq \dfrac{a}{c} + \dfrac{c}{b} + \dfrac{b}{a} $

     

    Bình luận
  2. Ta có:

    $\left(\dfrac{a}{b} – \dfrac{b}{c}\right)^2 \geq 0$

    $\Leftrightarrow \dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} – 2\dfrac{a}{b}\cdot\dfrac{b}{c} \geq 0$

    $\Leftrightarrow \dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} \geq \dfrac{2a}{c}$

    Tương tự ta được:

    $\dfrac{b^2}{c^2} + \dfrac{c^2}{a^2} \geq \dfrac{2b}{a}$

    $\dfrac{c^2}{a^2} + \dfrac{a^2}{b^2} \geq \dfrac{2c}{b}$

    Cộng vế  theo vế ta được:

    $2\left(\dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} +\dfrac{c^2}{a^2}\right) \geq 2\left(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a}\right)$

    $\Leftrightarrow \dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} +\dfrac{c^2}{a^2}\geq \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a}$

    Bình luận

Viết một bình luận