CMR : a, x^2 + y^2 = (x+y)^2 – 2xy b, x^3+y^3=(x+y)^3-3xy(x+y) c, x^3-y^3=(x-y)^3+3xy(x-y) 25/10/2021 Bởi Josephine CMR : a, x^2 + y^2 = (x+y)^2 – 2xy b, x^3+y^3=(x+y)^3-3xy(x+y) c, x^3-y^3=(x-y)^3+3xy(x-y)
Giải thích các bước giải : `a)x^2+y^2` `=(x^2+2xy+y^2)-2xy` `=(x+y)^2-2xy` `b)x^3+y^3` `=(x^3+3x^2y+3xy^2+y^3)-(3x^2y+3xy^2)` `=(x+y)^3-3xy(x+y)` `c)x^3-y^3` `=(x^3-3x^2y+3xy^2-y^3)+(3x^2y-3xy^2)` `=(x-y)^3+3xy(x-y)` Bình luận
a, $x^2+y^2=(x+y)^2-2xy$ $VP=x^2+2xy+y^2=x^2+y^2=VT$ b, $x^3+y^3=(x+y)^3-3xy(x+y)$ $VP=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2=x^3+y^3=VT$ c, $x^3-y^3=(x-y)^3+3xy(x-y)$ $VP=x^3-3x^2y+3xy^2-y^3+3x^2y-3xy^2=x^3-y^3=VT$ Bình luận
Giải thích các bước giải :
`a)x^2+y^2`
`=(x^2+2xy+y^2)-2xy`
`=(x+y)^2-2xy`
`b)x^3+y^3`
`=(x^3+3x^2y+3xy^2+y^3)-(3x^2y+3xy^2)`
`=(x+y)^3-3xy(x+y)`
`c)x^3-y^3`
`=(x^3-3x^2y+3xy^2-y^3)+(3x^2y-3xy^2)`
`=(x-y)^3+3xy(x-y)`
a, $x^2+y^2=(x+y)^2-2xy$
$VP=x^2+2xy+y^2=x^2+y^2=VT$
b, $x^3+y^3=(x+y)^3-3xy(x+y)$
$VP=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2=x^3+y^3=VT$
c, $x^3-y^3=(x-y)^3+3xy(x-y)$
$VP=x^3-3x^2y+3xy^2-y^3+3x^2y-3xy^2=x^3-y^3=VT$